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Abstract
Comtet introduced the notion of indecomposable permutations in 1972. A per-
mutation is indecomposable if and only if it has no proper prefix which is itself a
permutation. Indecomposable permutations were studied in the literature in vari-
ous contexts. In particular, this notion has been proven to be useful in obtaining
non-trivial enumeration and equidistribution results on permutations.

In this paper, we give a complete classification of indecomposable permutations
avoiding a classical pattern of length 3 or 4, and of indecomposable permutations
avoiding a non-consecutive vincular pattern of length 3. Further, we provide a
recursive formula for enumerating 12 . . . k-avoiding indecomposable permutations
for k � 3. Several of our results involve the descent statistic. We also provide a
bijective proof of a fact relevant to our studies.

1. Introduction

Let [n] = {1, . . . , n} and Sn be the set of permutations of [n]. Given ⇡ = ⇡1 · · ·⇡n 2
Sn, let i⇡ denote the smallest index such that ⇡1 · · ·⇡i⇡ is a permutation of [i⇡]. If
i⇡ = n then ⇡ is indecomposable; otherwise, ⇡ is decomposable. For example, 23514
is indecomposable, while 31254 is decomposable.
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For a permutation ⇡ of a set {a1, . . . , an}, the reduced form of ⇡, denoted red(⇡),
is the permutation of [n] obtained from ⇡ by replacing the i-th smallest element
with i. For example, red(2537) = 1324. For any permutation ⇡, we have ⇡ =
⇡(1)⇡(2) · · ·⇡(k) for some k � 1, where ⇡(i) is a permutation such that red(⇡(i)) is
indecomposable for all 1  i  k. We say that a ⇡(i) is a component of ⇡. For
example, the permutation 312465 has components 312, 4 and 65.

A (permutation) pattern is a permutation ⌧ = ⌧1 · · · ⌧k. We say that a permuta-
tion ⇡ = ⇡1 · · ·⇡n contains an occurrence of ⌧ if there are 1  i1 < · · · < ik  n such
that ⇡i1 · · ·⇡ik is order-isomorphic to ⌧ , that is, if the reduced form of ⇡i1 · · ·⇡ik is
⌧ . If ⇡ does not contain an occurrence of ⌧ , we say that ⇡ avoids ⌧ . These patterns
are referred to as “classical patterns”. For instance, the permutation 315267 con-
tains several occurrences of the pattern 123, for example, the subsequences 356 and
157, while this permutation avoids the pattern 321. A comprehensive introduction
to the theory of patterns in permutations can be found in [19].

Other patterns of interest to us are vincular patterns, also known as generalized
patterns [1, 23], where some of the elements may be required to be adjacent in the
permutation. We underline elements of a given pattern to indicate the elements that
must be adjacent in any occurrence of the pattern. For example, the permutation
⇡ = 136254 contains four occurrences of the pattern 132, namely, the subsequences
162, 154, 354 and 254 (in each of these occurrences, the elements in ⇡ corresponding
to 2 and 3 in the pattern stay next to each other). On the other hand, ⇡ contains
only one occurrence of the pattern 132, namely, 254. If all elements in an occurrence
of a pattern are required to stay next to each other, which is indicated by underlying
all elements in the pattern, such a pattern is called a consecutive pattern [15]. A
classical statistic descent is just an occurrence of the pattern 21. Vincular patterns
play an important role in the theory of patterns in permutations and words (see
Sections 3.3 and 3.4 in [19] for details).

The notion of indecomposable permutations (also known as irreducible permu-
tations or connected permutations) was introduced by Comtet [9, 10]. Comtet was
the first one to show the ordinary generating function for the number In of inde-
composable permutations of length n is

1X
n=1

Inxn = 1� 1P
k�0 k!xk

.

These numbers begin with 1, 1, 3, 13, 71, 461, 3447, 29093, . . . for n � 1, and
appear as the sequence A003319 in the On-Line Encyclopedia of Integer Sequences
(OEIS) [22].

Indecomposable permutations appear in various contexts in the literature, for
example, see [7, 8, 12, 13, 18]. In particular, in [7, Section 4], indecomposable
permutations are used to define a bijection between 231- and 321-avoiding permu-
tations (finding various bijections essentially between these sets was the subject of
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several papers in the literature). Also, indecomposable pattern avoiding permuta-
tions are a key object in [8] to find a bijection between permutations in question
and �(1, 0)-trees. Corollaries of this result include a number of equidistribution
results on permutations, �(1, 0)-trees and certain types of planar maps. Finally,
we note that indecomposable pattern avoiding permutations were first studied by
Bóna in [3], where essentially 2431-avoiding indecomposable permutations are enu-
merated (indecomposable permutations are defined up to reverse in [3]) and linked
in a bijective way to �(0, 1)-trees.

In this paper, we study interrelations (taking into account the descent statistic,
which comes “for free”) between pattern avoiding permutations and their inde-
composable counterparts for classical patterns of length 3 and 4, vincular non-
consecutive patterns of length 3, and the increasing classical pattern of arbitrary
length (patterns of length 2 are trivial). We use our results and known enumeration
formulas for pattern avoiding permutations to enumerate indecomposable pattern
avoiding permutations. Some of the obtained numbers appear in the OEIS, sug-
gesting a number of bijective questions.

The paper is organized as follows. In Section 2, we introduce generating functions
to be studied in this paper and state known pattern avoiding results to be used.
In Section 3, we study indecomposable permutations avoiding classical patterns of
length 3 and 4, as well as the classical pattern 12 . . . k for k � 3. In Section 4, we
study indecomposable permutations avoiding a vincular non-consecutive pattern
of length 3, in particular, presenting a bijective result in Theorem 4.4. Finally, in
Section 5, we summarize our enumerative results (see Table 2) and discuss directions
of further research.

2. Preliminaries

Let A�
n and I�

n be the number of �-avoiding permutations of [n] and �-avoiding
indecomposable permutations of [n], respectively. For 0  i  n � 1, let A�

n,i and
I�
n,i be the number of �-avoiding permutations of [n] and �-avoiding indecomposable

permutations of [n] with i descents, respectively. Thus, for n � 1, we have

A�
n =

n�1X
i=0

A�
n,i and I�

n =
n�1X
i=0

I�
n,i.

Let A�(x), A�(x, q), I�(x) and I�(x, q) be the generating functions for A�
n, A�

n,i,
I�
n and I�

n,i, respectively. That is,

A�(x, q) =
1X

n=0

n�1X
i=0

A�
n,ix

nqi, I�(x, q) =
1X

n=1

n�1X
i=0

I�
n,ix

nqi,
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A�(x) = A�(x, 1) =
1X

n=0

A�
nxn and I�(x) = I�(x, 1) =

1X
n=1

I�
nxn.

If for patterns �1 and �2, A�1
n = A�1

n for all n � 0 then �1 and �2 are Wilf-equivalent.
For a permutation ⇡ = ⇡1 · · ·⇡n, its reverse is the permutation r(⇡) = ⇡n⇡n�1 · · ·⇡1

and its complement is the permutation c(⇡) = (n+1�⇡1)(n+1�⇡2) · · · (n+1�⇡n).
For example, if ⇡ = 32145 then r(⇡) = 54123 and c(⇡) = 34521. The reverse and
complement operations are called trivial bijections. It is easy to see that for any
pattern �, this pattern is Wilf-equivalent to r(�) and c(�). Another useful prop-
erty of trivial bijections is that their composition preserves the property of being
decomposable (and thus the property of being indecomposable), which is easy to
see.

One of concerns in this paper is to find interrelations between I�(x, q) and
A�(x, q) for certain �s. We note that throughout this paper we implicitly use the
fact that an occurrence of a descent cannot start in one component of a permutation
and end in another one.

In the rest of this section we review a number of permutation pattern avoidance
results relevant to this paper.

Lemma 2.1 ([20]). For � 2 S3 and n � 0, A�
n = Cn = 1

n+1

�2n
n

�
, the n-th Catalan

number. Thus,

A�(x) = C(x) =
1�

p
1� 4x

2x
,

the generating function for the Catalan numbers satisfying xC(x)2 �C(x) + 1 = 0.
For n � 0, the Catalan numbers begin with 1, 1, 2, 5, 14, 42, . . ., which is the sequence
A000108 in the OEIS [22].

The next result links the well-known Bell numbers to pattern avoiding permuta-
tions. The Bell numbers begin with 1, 1, 2, 5, 15, 52, 203, . . . for n � 0, and this is
the sequence A000110 in the OEIS [22].

Lemma 2.2 ([6]). When � 2 {123, 132, 312, 321}, for n � 0, we have

A�
n = Bn,

where Bn is the n-th Bell number, which is the number of set partitions of [n].
When � 2 {213, 231}, for n � 0, we have

A�
n = Cn.

We next turn our attention to classical patterns of length 4. Table 1 presents
three Wilf-equivalence classes in this case.

A1234
n for n � 0 begins with 1, 1, 2, 6, 23, 103, . . . (this is sequence [22, A005802]),

and we have the following lemma.
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1 1234,4321, 1243,2134,3421,4312, 1432,2341,3214,4123, 2143,3412
2 1342,2431,3124,4213, 1423,2314,3241,4132, 2413,3142
3 1324,4231

Table 1: The three Wilf-equivalence classes for pattern avoidance of length 4. Spaces
on a line are used to group patterns equivalent via trivial bijections.

Lemma 2.3 ([16]). For � 2 {1234, 4321, 1243, 2134, 3421, 4312, 1432, 2341, 3214, 4123,
2143, 3412}, we have

E(x) := A�(x) =
1

6x2

✓
1 + 5x� (1� 9x)

3
4 (1� x)

1
4 2F1

✓
�1

4
,
3
4
; 1;

64x
(x� 1)(1� 9x)3

◆◆
.

Moreover, for n � 1, we have

En := A�
n = 2

nX
k=0

✓
2k
k

◆✓
n

k

◆2 3k2 + 2k � 2kn� n + 1
(k + 1)2(k + 2)(n� k + 1)

.

An exact enumeration for 1342-avoiding permutations and the corresponding
generating function are given by Bóna [3]. The corresponding sequence for n � 0
begins with 1, 1, 2, 6, 23, 103, 512, . . . (A022558 in [22]) and the following lemma
holds.

Lemma 2.4 ([3]). For � 2 {1342, 2431, 3124, 4213, 1423, 2314, 3241, 4132, 2413, 3142},
we have

F (x) := A�(x) =
32x

1 + 20x� 8x2 � (1� 8x)3/2
=

1 + 20x� 8x2

2(1 + x)3
+

(1� 8x)3/2

2(1 + x)3
.

Moreover, for n � 1, we have

Fn := A�
n =

7n2 � 3n� 2
2

(�1)n�1 + 3
nX

i=2

(�1)n�i2i+1 (2i� 4)!
i!(i� 2)!

✓
n� i + 2

2

◆
.

However, no formula for A1324
n is known, only a recurrence relation is discovered

[21], and an algorithm for counting the number of 1324-avoiding permutations was
given in [11, 17]. For recent developments on the bounds, see [2, 4]. The correspond-
ing sequence for n � 0 begins with 1, 1, 2, 6, 23, 103, 513, 2762, . . .; see A061552 in
[22].

3. Indecomposable Permutations Avoiding Classical Patterns

Patterns are permutations, and we distinguish two cases according to whether or
not they are decomposable. We start with an easier case.
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3.1. Indecomposable Patterns

Here we deal with the following patterns:
231, 312, 321,
2341, 2413, 2431, 3142, 3241, 3412, 3421, 4123, 4321, 4132, 4213, 4231, 4312.
We first establish a property holding for any indecomposable pattern �.

Lemma 3.1. If � is an indecomposable pattern, then I�(x, q) satisfies

I�(x, q) = 1� 1
A�(x, q)

.

Proof. For any permutation ⇡, an occurrence of � cannot start in one component
and end in another one, which would contradict � being irreducible. Similarly,
a descent cannot start in one component and end in another one. Hence, the
generating function for �-avoiding permutations with k components is [I�(x, q)]k

and

A�(x, q) = 1 +
1X

k=1

(I�(x, q))k =
1

1� I�(x, q)
,

where “1+” corresponds to the empty permutation. This gives the desired result.

Combining Lemma 3.1 (q = 1) and Lemma 2.1 we obtain the following theorem,
which can also be derived, e.g. from considerations in [7].

Theorem 3.2. For � 2 {312, 321, 231}, we have

I�(x) =
1�

p
1� 4x
2

. (1)

Thus, for n � 1, I�
n = Cn�1, the (n� 1)-th Catalan number.

Combining Lemma 3.1 (q = 1) and Lemma 2.4 we obtain the following theorem
established in [3].

Theorem 3.3. For � 2 {2431, 4213, 3241, 4132, 2413, 3142}, we have

I�(x) =
�1 + 12x + 8x2 + (1� 8x)3/2

32x
.

The initial values for I�
n in this case are 1, 1, 3, 12, 56, 288, 1584, 9152, . . . for n � 1,

and this is the sequence A000257 in the OEIS [22].

Similarly, one can combine Lemma 3.1 (q = 1) and Lemma 2.3 to obtain a
formula for I�(x), where � 2 {4321, 3421, 4312, 2341, 4123, 3412}. The initial values
for I�

n in this case are 1, 1, 3, 12, 56, 289, 1603, 9391, . . . for n � 1, and this sequence
is not in the OEIS [22].
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However, we cannot obtain a formula for I4231(x) using Lemma 3.1 because no
formula is known for A4231(x). The initial values for I4231

n are

1, 1, 3, 12, 56, 289, 1604, 9415, . . .

for n � 1, and this sequence is not in the OEIS [22].

3.2. Decomposable Patterns

The patterns here we deal with are 123, 132, 213 and 1234, 1243, 1324, 1342, 1423,
1432, 2134, 2143, 2314, 3124, 3214.

3.2.1. Decomposable Patterns of Length 3

Pattern 123. We first give a description of 123-avoiding decomposable permuta-
tions.

Lemma 3.4. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is the component in ⇡ formed by the
elements in {1, . . . , i⇡}. Then ⇡ is a 123-avoiding decomposable permutation if and
only if

⇡(1) = i⇡(i⇡ � 1) · · · 1,⇡0 = n(n� 1) · · · (i⇡ + 1) and 1  i⇡  n� 1.

Proof. The backward direction is straightforward to see since no occurrence of the
pattern 123 can start in ⇡(1).

For the forward direction, since ⇡ = ⇡1 · · ·⇡n is decomposable, one must have
1  i⇡  n� 1. If ⇡i < ⇡j for some 1  i < j  i⇡ then ⇡i⇡j⇡n is an occurrence of
the pattern 123; contradiction. If ⇡i < ⇡j for some i⇡ + 1  i < j  n then ⇡1⇡i⇡j

is an occurrence of the pattern 123; contradiction. Thus, we obtain the desired
result.

Next we derive a relation between I123(x, q) and A123(x, q), which will give
formulas for I123(x) and I123

n . The initial values for I123
n for n � 1 begin with

1, 1, 3, 11, 38, 127, 423, . . .. This sequence does not appear in the OEIS [22].

Theorem 3.5. We have that

A123(x, q) = I123(x, q) +
x2

(1� xq)2
+ 1, (2)

I123(x) =
1�

p
1� 4x

2x
� x2

(1� x)2
� 1, (3)

and for n � 1,

I123
n = Cn � (n� 1). (4)
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Proof. By Lemma 3.4, the generating function for all 123-avoiding decomposable
permutations is

P
i�1 xiqi�1

P
j�1 xjqj�1 = x2

(1�xq)2 . Since any 123-avoiding per-
mutation is either indecomposable, or decomposable, or the empty permutation, we
obtain the relation given by (2). Letting q = 1 in (2) and using Lemma 2.1, we
obtain (3). Finally, by Lemma 2.1 and the fact that x2

(1�x)2 =
P

n�1(n � 1)xn, we
obtain (4). This completes the proof.

We note that (4) appears in Proposition 9 in [14].

Patterns 132 and 213. We begin with a description of 132-avoiding decomposable
permutations.

Lemma 3.6. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is the component in ⇡ formed by
the elements in {1, . . . , i⇡}. Then ⇡ is a 132-avoiding decomposable permutation if
and only if ⇡(1) is a 132-avoiding decomposable permutation, 1  i⇡  n � 1, and
⇡0 = (i⇡ + 1)(i⇡ + 2) · · ·n.

Proof. The backward direction is easy to see since an occurrence of the pattern 132
cannot start in ⇡(1) in this case.

For the forward direction, since ⇡ is decomposable, we have 1  i⇡  n � 1.
Moreover, since ⇡ is 132-avoiding, ⇡(1) must be 132-avoiding. Finally, if ⇡i > ⇡j

for i⇡ + 1  i < j  n then ⇡1⇡i⇡j is an occurrence of the pattern 132, which is a
contradiction. This completes the proof.

Next we find a relation between A�(x, q) and I�(x, q) for � 2 {132, 213}, which
will give us formulas for I�(x) and I�

n . The initial values for I132
n = I213

n for n � 1
begin with 1, 1, 3, 9, 28, 90, 297, 1001, . . ., which is the sequence A000245 in [22].

Theorem 3.7. For � 2 {132, 213}, we have that

A�(x, q) = 1 +
1

1� x
I�(x, q), (5)

I�(x) = (1� x)
✓

1�
p

1� 4x
2x

� 1
◆

, (6)

I�
1 = 1, and for n � 2,

I�
n = Cn � Cn�1. (7)

Proof. Let � = 132. By Lemma 3.6, the generating function for all 132-avoiding
decomposable permutations is I132(x, q)

P
j�1 xj = x

1�xI132(x, q). Similarly to the
proof of Theorem 3.5, we have

A132(x, q) = 1 + I132(x) +
x

1� x
I132(x, q)

= 1 +
1

1� x
I132(x, q)
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giving (5) for � = 132. Letting q = 1 in (5) and using Lemma 2.1, we obtain

I132(x) = (1� x)(A132(x)� 1)

= (1� x)
✓

1�
p

1� 4x
2x

� 1
◆

giving (6) for � = 132. From (6), I132
1 = 1 and, for n � 2 (7) follows for � = 132.

Finally, since the composition of reverse and complement preserves the property
of being irreducible, and this composition applied to 132 gives 213, we have that
(5), (6) and (7) hold for � = 213. This completes the proof.

Note that (7) follows directly from Lemma 3.6. Indeed, in a decomposable 132-
avoiding permutation, the largest element n must be the rightmost element, and
the number of such permutations is Cn�1, while the number of all 132-avoiding
permutations of length n is Cn. Also, note that (7) appears in Proposition 9 in [14].

3.2.2. Decomposable Patterns of Length 4

Recall that when applying the composition of reverse and complement, the property
of being decomposable is retained. Applying that composition to 2143, 1324 and
1234 yields the original pattern. For the remaining eight decomposable patterns
this operation gives

I2314(x, q) = I1423(x, q), I3124(x, q) = I1342(x, q),

I3214(x, q) = I1432(x, q), and I2134(x, q) = I1243(x, q).

Thus, we only need to consider seven decomposable patterns of length 4.

Patterns 2314 and 3124. We start with a description of 2314-avoiding and 3124-
avoiding decomposable permutations.

Lemma 3.8. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is a permutation of {1, . . . , i⇡}.
Then ⇡ is a 2314-avoiding (resp., 3124-avoiding) decomposable permutation if and
only if ⇡(1) is 231-avoiding (resp., 312-avoiding) and ⇡0 is 2314-avoiding (resp.,
3124-avoiding).

Proof. For the backward direction, because ⇡(1) is 231-avoiding (resp., 312-avoiding),
at most two elements in a possible occurrence of the pattern 2314 (resp., 3124) can
be in ⇡(1). But then ⇡0 contains an element smaller than an element in ⇡(1), which
is impossible, and thus ⇡ is 2314-avoiding (resp., 3124-avoiding).

For the forward direction, since ⇡ = ⇡1 · · ·⇡n is decomposable, we have 1  i⇡ 
n � 1. Also, clearly ⇡0 is 2314-avoiding (resp., 3124-avoiding). Now, if ⇡(1) would
contain an occurrence of the pattern 231 (resp., 312) then together with ⇡n it would
form an occurrence of the pattern 2314 (resp., 3124); contradiction. Thus ⇡(1) is
231-avoiding (resp., 312-avoiding). This completes the proof.
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The sequence for I2314
n and I3124

n for n � 1 begin with 1, 1, 3, 13, 65, 350, 1979,
11612, . . ., which does not appear in the OEIS [22].

Theorem 3.9. We have

A2314(x, q) = 1 + I2314(x, q) + I231(x, q)
�
A2314(x, q)� 1

�
(8)

and

A3124(x, q) = 1 + I3124(x, q) + I312(x, q)
�
A3124(x, q)� 1

�
. (9)

Further, for � 2 {2314, 3124}, we have that

I�(x) =
1
2

�p
1� 4x + 1

�✓
32x

1 + 20x� 8x2 � (1� 8x)3/2
� 1

◆
,

with I�
1 = 1, and for n � 2,

I�
n = Fn �

n�2X
i=0

CiFn�1�i,

where Fn is defined in Lemma 2.4.

Proof. By Lemma 3.8, the generating function for 2314-avoiding decomposable per-
mutations is I231(x, q)(A2314 (x, q)� 1), where “�1” corresponds to excluding the
empty permutation as a possibility for ⇡0. Similarly, the generating function for
3124-avoiding decomposable permutations is I312(x, q)(A3124 (x, q)� 1).

Note that each �-avoiding permutation is either the empty permutation, or an
indecomposable permutation or a decomposable one. This observation shows (8)
and (9).

Let q = 1 in (8). Combing this with Lemma 2.4 and (1), we obtain

I2314(x) =
�
1� I231(x)

�
·
�
A2314(x)� 1

�
(10)

= (1� xC(x)) (F (x)� 1) (11)

=
1
2

�p
1� 4x + 1

�✓
32x

1 + 20x� 8x2 � (1� 8x)3/2
� 1

◆
. (12)

Hence, by (11), we have that I2314
1 = 1 and for n � 2,

I2314
n = Fn + Cn�1 �

n�1X
i=0

CiFn�1�i

= Fn �
n�2X
i=0

CiFn�1�i.

It is straightforward to provide essentially the same derivations for the case of 3124-
avoiding indecomposable permutations, which completes the proof.
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Pattern 3214. We begin with a description of 3214-avoiding decomposable per-
mutations. Our proof of the next lemma is similar to the proof of Lemma 3.8 and
thus is omitted.

Lemma 3.10. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is a permutation of {1, . . . , i⇡}.
Then ⇡ is a 3214-avoiding decomposable permutation if and only if ⇡(1) is 321-
avoiding and ⇡0 is a 3214-avoiding.

The initial values I3214
n for n � 1 begin 1, 1, 3, 13, 65, 351, 1999, 11872, . . . and this

sequence is not in the OEIS [22].

Theorem 3.11. We have

A3214(x, q) = 1 + I3214(x, q) + I321(x, q)
�
A3214(x, q)� 1

�
. (13)

Moreover, for E(x) and En defined in Lemma 2.3, we have

I3214(x) =
1
2

�p
1� 4x + 1

�
(E(x)� 1) ,

I3214
1 = 1 and for n � 2

I3214
n = En �

n�2X
i=0

CiEn�1�i.

Proof. We can proceed similarly to the proof of Theorem 3.9 to prove (13). Further,
assuming that q = 1 in (13), one can apply Lemma 2.3 and (1), to obtain

I3214(x) =
�
1� I321(x)

�
·
�
A3214(x)� 1

�
= (1� xC(x)) (E(x)� 1)

=
1
2

�p
1� 4x + 1

�
(E(x)� 1) .

From the last derivation, the formula for I3214
n holds.

Pattern 2143. We begin with a description of 2143-avoiding decomposable per-
mutations.

Lemma 3.12. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is a permutation of {1, . . . , i⇡}.
Then ⇡ is a 2143-avoiding decomposable permutation if and only if one of the fol-
lowing two conditions holds:
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• ⇡(1) = 1 and ⇡0 is 2143-avoiding.

• 2  i⇡  n� 1, ⇡(1) is 2143-avoiding and ⇡0 = (i⇡ + 1)(i⇡ + 2) · · ·n .

Proof. For the forward direction, since ⇡ is decomposable, we have 1  i⇡  n� 1.
There are two cases to consider:

• i⇡ = 1. It is clear that ⇡(1) = 1 in this case does not a↵ect ⇡0, so ⇡0 must be
a 2143-avoiding permutation of {2, . . . , n}.

• 2  i⇡  n� 1. Since ⇡(1) is indecomposable of length at least 2, there exist
1  j1 < j2  i⇡ such that ⇡j1 > ⇡j2 . But then to avoid an occurrence of the
pattern 2143 involving ⇡j1 and ⇡j2 , ⇡0 must be the increasing permutation
(i⇡ + 1)(i⇡ + 2) · · ·n.

The backward direction is easy to see using similar considerations as above.

The initial values I2143
n for n � 1 are 1, 1, 3, 13, 63, 330, 1838, 10758, . . ., and this

sequence is not in the OEIS [22].

Theorem 3.13. We have

A2143(x, q) = 1 + I2143(x, q) + x
�
A2143(x, q)� 1

�
+

x

1� x

�
I2143(x, q)� x

�
. (14)

Moreover, for E(x) and En defined in Lemma 2.3, we have

I2143(x) = (1� x)2E(x) + 2x� 1,

I2143
n = 1 and for n � 2,

I2143
n = En � 2En�1 + En�2.

Proof. By Lemma 3.12, (14) follows. Further, letting q = 1 in (14) and using
Lemma 2.3, it follows that

I2143(x) = (1� x)2A2143(x) + 2x� 1
= (1� x)2E(x) + 2x� 1,

from which the formula for I2143
n follows.

Pattern 2134. We first give a description of 2134-avoiding decomposable permu-
tations.

Lemma 3.14. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is a permutation of {1, . . . , i⇡}.
Then ⇡ is a 2134-avoiding decomposable permutation if and only if one of the fol-
lowing two conditions holds:
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• ⇡(1) = 1 and ⇡0 is 2134-avoiding.

• 2  i⇡  n� 1, ⇡(1) is 213-avoiding, and ⇡0 = n(n� 1) · · · (i⇡ + 1).

Proof. For the forward direction, since ⇡ = ⇡1 · · ·⇡n is decomposable, we have
1  i⇡  n� 1. There are two cases to consider:

• i⇡ = 1. It is clear that ⇡(1) does not a↵ect the rest of the permutation, and
⇡0 must be a 2134-avoiding permutation of {2, . . . , n}.

• 2  i⇡  n � 1. Then ⇡(1) must be a 213-avoiding permutation, or else it
would form an occurrence of the pattern 2134 with ⇡n. Moreover, since ⇡(1)

is indecomposable, there exist 1  j1 < j2  i⇡ such that ⇡j1 > ⇡j2 . But then
to avoid an occurrence of the pattern 2134 involving ⇡j1 and ⇡j2 , ⇡0 must be
the decreasing permutation n(n� 1) · · · (i⇡ + 1).

The backward direction is not di�cult to see using the considerations above.

Initial values for I2134
n are 1, 1, 3, 13, 67, 369, 2117, 12578, . . . for n � 1, and this

sequence is not in the OEIS [22].

Theorem 3.15. We have

A2134(x, q) = 1 + I2134(x, q) + x
�
A2134(x, q)� 1

�
+

x

1� xq

�
I213(x, q)� x

�
. (15)

Moreover, for E(x) and En defined in Lemma 2.3, we have

I2134(x) = (1� x)E(x)� xC(x)� 1 + 2x +
x2

1� x
,

I2134
1 = 1 and for n � 2,

I2134
n = En �En�1 � Cn�1 + 1.

Proof. The identity (15) follows from Lemma 3.14. Further, setting q = 1 in (15),
and applying Theorem 3.7 and Lemma 2.3, one has

I2134(x) = (1� x)A2134(x)� (1� x)� x

1� x
I213(x) +

x2

1� x

= (1� x)A2134(x)� (1� x)� x(C(x)� 1) +
x2

1� x

= (1� x)E(x)� xC(x) + 2x +
x2

1� x
� 1.

From this, we have the desired formula for I2134
n .
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Pattern 1324. We first give a description of 1324-avoiding decomposable permu-
tations.

Lemma 3.16. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is a permutation of {1, . . . , i⇡}.
Then ⇡ is a 1324-avoiding decomposable permutation if and only if ⇡(1) is 132-
avoiding and ⇡0 is 213-avoiding.

Proof. For the forward direction, since ⇡ = ⇡1 · · ·⇡n is decomposable, we have
1  i⇡  n�1. Moreover, ⇡(1) is 132-avoiding, or else, along with ⇡n an occurrence
of the pattern 1324 would be formed. Also, ⇡0 is 213-avoiding or else, along with
⇡1 an occurrence of the pattern 1324 would be formed. The backward direction is
not di�cult to see.

Initial values for I1324
n are 1, 1, 3, 13, 69, 396, 2355, 14363, . . ., and this sequence is

not in the OEIS [22].

Theorem 3.17. We have

A1324(x, q) = 1 + I1324(x, q) + I132(x, q)
�
A213(x, q)� 1

�
. (16)

Also,

I1324(x) = A1324(x)� 1� (1� x) (C(x)� 1)2 .

Moreover, I1324
1 = 1 and for n � 2,

I1324
n = A1324

n � Cn+1 + 3Cn � 2Cn�1.

Proof. The identity (16) follows from Lemma 3.16. Further, setting q = 1 in (16)
and applying Lemma 2.1 and Theorem 3.7, we obtain

I1324(x) = A1324(x)� 1� I132(x)
�
A213(x)� 1

�
= A1324(x)� 1� (1� x) (C(x)� 1)2

= A1324(x)� 1� (1� x)

C(x)� 1

x
� 2C(x) + 1

�
.

Hence, I1324
1 = 1 and for n � 2,

I1324
n = A1324

n � (Cn+1 � Cn) + 2(Cn � Cn�1)
= A1324

n � Cn+1 + 3Cn � 2Cn�1.

This completes the proof.
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Pattern 1234. Decomposable 1234-avoiding permutations can be described as
follows.

Lemma 3.18. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is a permutation of {1, . . . , i⇡}.
Then ⇡ is a 1234-avoiding decomposable permutation if and only if one of the fol-
lowing two conditions holds:

• ⇡(1) = i⇡(i⇡ � 1) · · · 1, ⇡0 is 123-avoiding and 1  i⇡  n� 1, or

• ⇡(1) 6= i⇡(i⇡ � 1) · · · 1 is 123-avoiding, ⇡0 = n(n� 1) · · · (i⇡ +1), and 3  i⇡ 
n� 1.

Proof. Since ⇡ is 1234-avoiding, then ⇡(1) must be 123-avoiding, or else there would
be an occurrence of the pattern 1234 involving an element in ⇡0. Thus, the longest
increasing sequence in ⇡(1) is at most of length 2. There are two cases to consider.

• ⇡(1) = i⇡(i⇡ � 1) · · · 1. Then, clearly, ⇡0 must be 123-avoiding.

• The longest increasing subsequence in ⇡(1) is exactly of length 2. But then,
since ⇡(1) is indecomposable, we have i⇡ > 2 and ⇡0 must be 12-avoiding, that
is, ⇡0 = n(n� 1) · · · (i⇡ + 1).

This completes the proof.

Initial values for I1234
n are 1, 1, 3, 13, 69, 400, 2390, 14545, . . . for n � 1, and this

sequence is not in the OEIS [22].

Theorem 3.19. We have
A1234(x, q) =

1 + I1234(x, q) +
x

1� xq

�
A123(x, q)� 1

�
+

x

1� xq

✓
I123(x, q)� x

1� xq

◆
. (17)

Also, for E(x) defined in Lemma 2.3,

I1234(x) = E(x)� 2x
1� x

C(x) +
x3

(1� x)3
+

x2

(1� x)2
+

2x
1� x

� 1.

Moreover, I1234
1 = 1 and for n � 2 and for En defined in Lemma 2.3,

I1234
n = En � 2

n�1X
i=0

Ci +
1
2

�
n2 � n� 4

�
.
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Proof. The identity (17) follows from Lemma 3.18. Further, setting q = 1 in (17),
and applying Lemmas 2.1 and 2.3 and Theorem 3.5, we have

I1234(x) = A1234(x)� 1� x

1� x

�
A123(x)� 1

�
� x

1� x

✓
I123(x)� x

1� x

◆

= E(x)� 1� x

1� x

✓
2C(x)� 2� x2

(1� x)2
� x

1� x

◆

= E(x)� 2x
1� x

C(x) +
x3

(1� x)3
+

x2

(1� x)2
+

2x
1� x

� 1.

Hence, it follows that I1234
1 = 1 and for n � 2

I1234
n = En � 2

n�1X
i=0

Ci +
1
2

�
n2 � n + 4

�

= En � 2
n�1X
i=1

Ci +
n(n� 1)

2
.

This completes the proof.

3.2.3. Pattern 12 . . . k with k � 3

Here we consider patterns of the form 12 . . . k, where k � 3, which generalizes our
considerations for patterns 123 and 1234. First, we give a description of 12 . . . k-
avoiding decomposable permutations in the following lemma, whose proof is trivial
and thus is omitted.

Lemma 3.20. If ⇡ = ⇡(1)⇡0 is a 12 . . . k-avoiding decomposable permutation of
length n, where ⇡(1) is a permutation of {1, . . . , i⇡}. Then there exists m, 1  m 
k � 2, such that the longest increasing subsequence in ⇡(1) is exactly of length m
and ⇡0 is 12 . . . (k �m)-avoiding.

Now we can enumerate 12 . . . k-avoiding indecomposable permutations.

Corollary 3.21. We have

I12...k(x, q) =A12...k(x, q)

�
k�2X
m=1

⇣
I12...(m+1)(x, q)� I12...m(x, q)

⌘
·
⇣
A12...(k�m)(x, q)� 1

⌘
� 1.

Proof. By Lemma 3.20, we have

A12...k(x, q) = 1 + I12...k(x, q)

+
k�2X
m=1

⇣
I12...(m+1)(x, q)� I12...m(x, q)

⌘
·
⇣
A12...(k�m)(x, q)� 1

⌘
,

from which the result follows.
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For example, when k = 3, we have

A123(x) = 1 + I123(x) +
�
I12(x)� I1(x)

�
·
�
A12(x)� 1

�
= 1 + I123(x) +

x

1� x
· x

1� x
,

and hence

I123(x) = A123(x)� 1� x2

(1� x)2
=

1�
p

1� 4x
2x

� 1� x2

(1� x)2
,

which coincides with Theorem 3.5. Note that we used the facts that I(1)(x) = 0
and A12(x)� 1 = I(12)(x) = x + x2 + · · · = x

1�x .
When k = 4, we have

A1234(x) = 1+I1234(x)+
�
I12(x)� I1(x)

�
·
�
A123(x)� 1

�
+

�
I123(x)� I12(x)

�
·
�
A12(x)� 1

�
,

and hence

I1234(x) = E(x)� x

1� x

✓
2C(x)� 2� x2

(1� x)2
� x

1� x

◆
� 1,

which coincides with Theorem 3.19. Note that we used the fact that A123(x) = C(x).

4. Indecomposable Permutations Avoiding Vincular Non-consecutive
Patterns of Length 3

For a pattern of the form abc, its reverse complement gives a pattern of the form
xyz. Thus, since the composition of reverse and complement preserves the property
of being indecomposable, we only need to consider six cases of vincular patterns of
length 3, which are 123, 132, 213, 231, 312, and 321. Two of these cases can be
reduced to classical pattern-avoidance.

Indeed, it was shown in [6] that a permutation avoids the pattern 213 if and
only if it avoids the pattern 213. Applying the complement operation, this implies
that a permutation avoids 231 if and only if it avoids 231. Thus, I213

n = I213
n and

I231
n = I231

n and Theorems 3.7 and 3.2 can be applied, respectively.

Pattern 123. We first give a description of 123-avoiding decomposable permuta-
tions.

Lemma 4.1. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is a permutation of {1, . . . , i⇡}.
Then ⇡ = ⇡1 · · ·⇡n is a 123-avoiding decomposable permutation if and only if ⇡(1) =
⇡1 · · ·⇡i⇡�11 and ⇡0 = n(n� 1) · · · (i⇡ + 1) for 1  i⇡  n� 1, where ⇡1 · · ·⇡i⇡�1 is
a 123-avoiding permutation of {2, 3, . . . , i⇡}.
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Proof. Since ⇡ is decomposable, we have 1  i⇡  n�1. It is clear that ⇡(1) is a 123-
avoiding indecomposable permutation. We claim that ⇡i⇡ = 1, since otherwise 1,
⇡i⇡ and ⇡i⇡+1 will form the pattern 123. Further, clearly ⇡i⇡+1 > ⇡i⇡+2 > · · · > ⇡n,
or else there would be an occurrence of the pattern 123 involving 1.

On the other hand, it is easy to see that if ⇡(1) and ⇡0 satisfy the conditions then
⇡ is 123-avoiding. This completes the proof.

Initial values for I123
n for n � 1 are 1, 1, 3, 11, 43, 179, 801, . . . and this sequence

is not in the OEIS [22].

Theorem 4.2. We have

A123(x, q) = 1 + I123(x, q) +
x

1� xq

⇥�
A123(x, q)� 1

�
xq + x

⇤
. (18)

Also,

I123(x) =
1� x� x2

1� x
B(x)� 1,

where B(x) is the generating function for the Bell numbers.
Moreover, I123

1 = 1 and for n � 2,

I123
n = Bn �

n�2X
i=0

Bi.

Proof. By Lemma 4.1, the generating function for 123-avoiding decomposable per-
mutations is x

1�xq

⇥�
A123(x, q)� 1

�
xq + x

⇤
, hence (18) follows.

Letting q = 1 in (18), we have

I123(x) =
✓

1� x2

1� x

◆
A123(x)� 1.

Combining with Lemma 2.2, we obtain that

I123(x) =
1� x� x2

1� x
B(x)� 1.

Together with the fact that 1
1�x =

P
i�0 xi, we have I123

1 = 1 and for n � 2,

I123
n = Bn �

n�2X
i=0

Bi.

This completes the proof.

Pattern 132. We first give a description of 132-avoiding decomposable permuta-
tions.
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Lemma 4.3. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is a permutation of {1, . . . , i⇡}.
Then ⇡ = ⇡1 · · ·⇡n is a 132-avoiding decomposable permutation if and only if ⇡(1)

is 132-avoiding and ⇡0 = i⇡(i⇡ + 1) · · ·n for 1  i⇡  n� 1.

Proof. If ⇡ is 132-avoiding, then clearly ⇡(1) and ⇡0 are both 132-avoiding. More-
over, we must have ⇡i⇡+1 < ⇡i⇡+2 < · · · < ⇡n, or else there would be an occurrence
of the pattern 132 involving 1.

On the other hand, it is clear that if ⇡(1) and ⇡0 satisfy the given conditions then
⇡ is 132-avoiding, which completes the proof.

Initial values for I132
n for n � 1 are 1, 1, 3, 10, 37, 151, 674, . . ., which are essentially

the sequences A005493 and A138378 in the OEIS [22] that have several combinato-
rial interpretations. In particular, this sequence counts 132-avoiding permutations
that end with a rise, that is, with an occurrence of the pattern 12, which leads us
to the following theorem.

Theorem 4.4. For n � 2, the number of 132-avoiding indecomposable permutations
in Sn is equal to that of 132-avoiding permutations in Sn that end with a rise.

Proof. Let I and R be the first and the second sets, respectively, in the statement
of the theorem. We provide a recursive bijection f from I to R proving the theorem
with the base case f(21) = 12.

The set of 132-avoiding permutations can be subdivided into three disjoint sub-
sets:

• S1, all 132-avoiding permutations ending with 1;

• S2, all 132-avoiding permutations ending with n;

• S3, all other 132-avoiding permutations.

It is straightforward to see that the elements to the right of 1 in a 132-avoiding
permutation must be in increasing order. But then in S3, n must be to the left
of 1. Thus, a permutation in S3 belongs to both I and R and we map it to itself.
Further, it is easy to see that S1 is a subset of I but it is disjoint from R, while S2

is a subset of R but it is disjoint from I. For a permutation ⇡ = ⇡1 · · ·⇡n�11 2 S1

we define its image recursively as f(⇡) = f((⇡1 � 1) · · · (⇡n�1 � 1))n. The map f
described by us is easy to see to be a bijection. This completes the proof.

Next we enumerate 132-avoiding indecomposable permutations.

Theorem 4.5. We have

A132(x, q) = 1 + I132(x, q) +
x

1� x
I132(x, q). (19)

Also, I132(x) = (1� x)B(x)� 1, where B(x) is the generating function for the Bell
numbers. Moreover, I132

n = 1 and for n � 2 I132
n = Bn �Bn�1.
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Proof. By Lemma 4.3, the generating function for 132-avoiding decomposable per-
mutations is x

1�xI132(x, q) from which (19) follows.
Letting q = 1 in (19) and combining with Lemma 2.2, we obtain that

I132(x) = (1� x)A132(x)� 1 = (1� x)B(x)� 1.

Hence, it follows that
I132
n = Bn �Bn�1

for n � 2. This completes the proof.

Patterns 312 and 321. We first give a description of 312-avoiding and 321-avoiding
decomposable permutations.

Lemma 4.6. Let ⇡ = ⇡(1)⇡0 2 Sn, where ⇡(1) is a permutation of {1, . . . , i⇡}.
Then ⇡ is 312- (resp., 321-)avoiding if and only if ⇡(1) and ⇡0 are both 312- (resp.,
321-)avoiding.

Initial values for I312
n = I321

n for n � 1 are 1, 1, 2, 6, 22, 92, 426, . . ., and this is
the sequence A074664 in the OEIS [22] that has several combinatorial interpreta-
tions. In particular, this sequence counts the number of irreducible set partitions
of [n], which can be easily seen from the bijections in [6]. For more information on
irreducible set partitions, see [5].

Theorem 4.7. We have I312(x) = I321(x) = 1� 1
B(x) .

Proof. Since 312 is an irreducible pattern, Lemma 3.1 can be applied to obtain

A312(x) =
1

1� I312(x)
.

The desired result now follows from Lemma 2.2.

5. Concluding Remarks

The notion of indecomposable permutations proved to be useful in various contexts,
e.g. in obtaining non-trivial enumeration and equidistribution results on permuta-
tions [8].

In this paper, we gave a compete classification of indecomposable permutations
avoiding a classical pattern of length 3 or 4, and of indecomposable permutations
avoiding a non-consecutive vincular pattern of length 3; see Table 2 for a summary
of these results. Also, we provided a recursive formula for enumerating 12 . . . k-
avoiding indecomposable permutations for k � 3 (see Corollary 3.21). The descent
statistic is taken into account in several of our results.
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� I�(x) OEIS

312, 321, 231 1�
p

1�4x
2 A000108

132, 213 (1� x)
⇣

1�
p

1�4x
2x � 1

⌘
A000245

123 1�
p

1�4x
2x � x2

(1�x)2 � 1 —

2431, 4213,
3241, 4132,
2413, 3142

�1+12x+8x2+(1�8x)3/2

32x
A000257

2314, 3124 1
2

�p
1� 4x + 1

� ⇣
32x

1+20x�8x2�(1�8x)3/2 � 1
⌘

—

3214 1
2

�p
1� 4x + 1

�
(E(x)� 1) —

2143 (1� x)2E(x) + 2x� 1 —

2134 (1� x)E(x)� xC(x)� 1 + 2x + x2

1�x —

1324 A1324(x)� 1� (1� x) (C(x)� 1)2 —

1234 E(x)� 2x
1�xC(x) + x3

(1�x)3 + x2

(1�x)2 + 2x
1�x � 1 —

123 1�x�x2

1�x B(x)� 1 —

132 (1� x)B(x)� 1 A005493
A138378

312, 321 1� 1
B(x) A074664

Table 2: A summary of the avoidance results in this paper. The definitions of the
functions E(x), C(x), B(x) and A1324(x) can be found in Section 2 and Theorem 4.2.

A natural direction of further research is in extending our studies of indecom-
posable permutations to other patterns, e.g. vincular patterns of length 4. Also,
one can look at avoiding more than one pattern at the same time. Other statistics
can be included in enumerative results.

Finally, one can establish a number of bijective results linking pattern avoiding
indecomposable permutations to other structures (Theorem 4.4 is one such exam-
ple). For instance, the sequence A005493 in the OEIS [22] has many interesting
combinatorial interpretations that one could try to link in a bijective way to 132-
avoiding indecomposable permutations.
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