
#A12 INTEGERS 19 (2019)

ON ALGORITHMS TO CALCULATE INTEGER COMPLEXITY

Katherine Cordwell
Department of Mathematics, University of Maryland, College Park, Maryland

Computer Science Dept., Carnegie Mellon University, Pittsburgh, Pennsylvania
kcordwel@cs.cmu.edu

Alyssa Epstein
Dept. of Math. and Statistics, Williams College, Williamstown, Massachusetts

Stanford Law School, Stanford, California
alye@stanford.edu

Anand Hemmady
Dept. of Math. and Statistics, Williams College, Williamstown, Massachusetts

ash6@williams.edu

Steven J. Miller
Dept. of Math. and Statistics, Williams College, Williamstown, Massachusetts
Dept. of Math. Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania

sjm1@williams.edu, stevenm1@andrew.cmu.edu

Eyvindur Palsson
Dept. of Math., Virginia Polytechnic Institute and State University, Virginia

palsson@vt.edu

Aaditya Sharma
Dept. of Math. and Statistics, Williams College, Williamstown, Massachusetts

DPMMS, University of Cambridge
as2718@cam.ac.uk

Stefan Steinerberger
Department of Mathematics, Yale University, Connecticut

stefan.steinerberger@yale.edu

Yen Nhi Truong Vu
Dept. of Mathematics and Statistics, Amherst College, Amherst, Massachusetts

ytruongvu17@amherst.edu

Received: 6/28/17, Revised: 7/25/18, Accepted: 1/6/19, Published: 2/1/19

Abstract
We consider a problem first proposed by Mahler and Popken in 1953 and later
developed by Coppersmith, Erdős, Guy, Isbell, Selfridge, and others. Let f(n) be
the complexity of n 2 Z+, where f(n) is defined as the least number of 1’s needed
to represent n in conjunction with an arbitrary number of +’s, ⇤’s, and parentheses.
Several algorithms have been developed to calculate the complexity of all integers
up to n. Currently, the fastest known algorithm runs in time O(n1.230175) and was
given by J. Arias de Reyna and J. van de Lune in 2014. This algorithm makes use of

1

INTEGERS: 19 (2019) 2

a recursive definition given by Guy and iterates through products, f(d)+f
�

n
d

�
, for

d | n, and sums, f(a) + f(n� a), for a up to some function of n. The rate-limiting
factor is iterating through the sums. We discuss potential improvements to this
algorithm via a method that provides a strong uniform bound on the number of
summands that must be calculated for almost all n. We also develop code to run J.
Arias de Reyna and J. van de Lune’s analysis in higher bases and thus reduce their
runtime of O(n1.230175) to O(n1.222911236). All of our code can be found online at
https://github.com/kcordwel/Integer-Complexity.

1. Introduction

1.1. Background

In this paper, log denotes ln, and logb denotes the logarithm in base b. Given
n 2 N, the complexity of n, which we denote f(n), is defined as the least number of
1’s needed to represent n using an arbitrary number of additions, multiplications,
and parentheses. For example, because 6 may be represented as (1 + 1)(1 + 1 + 1),
f(6)  5. Calculating f(n) for arbitrary n is a problem that was posed in 1953 by
Mahler and Popken [10]. Guy [8] drew attention to this problem in 1986 when he
discussed it and several other simply stated problems in an Amer. Math. Monthly
article. The following recursive expression for integer complexity highlights the
interplay of additive and multiplicative structures:

f(n) = min
d | n

2d
p

n
1an/2

n
f(d) + f

⇣n

d

⌘
, f(a) + f(n� a)

o
. (1)

Some unconditional bounds on f(n) are known. In particular, [8] attributes a
lower bound of f(n) � 3 log3(n) to Selfridge. Also, an upper bound of f(n) 
3 log2(n) is attributed to Coppersmith. Extensive numerical investigation (see [9])
suggests that f(n) ⇠ 3.3 log3(n) for n large but it is not even known whether
f(n) � (3+"0) log3 n for some "0 > 0. As a step towards understanding these prob-
lems Altman and Zelinsky [4] introduced the discrepancy �(n) = f(n)�3 log3(n) and
provided a way to classify those numbers with a small discrepancy. This classifica-
tion was taken further by Altman [1, 2] where he obtained a finite set of polynomials
that represent precisely the numbers with small defects. As a consequence Altman
[3] was able to calculate the integer complexity of certain classes of numbers. Any
progress on these di�cult questions likely requires a substantial new idea; the main
di�culty, the interplay between additive and multiplicative structures, is at the core
of a variety of di↵erent open problems, which we believe adds to its allure.

INTEGERS: 19 (2019) 3

1.2. Algorithms

Much of the progress on this problem has been algorithmic. Using the above recur-
sive definition, it is possible to write algorithms to calculate f(n) for large values of
n where the rate-limiting step of the algorithm is iterating through the summands,
f(a) + f(n � a), for many values of a. In particular, the brute-force algorithm
that iterates over all a0s such that 1  a  n/2 runs in time O(n2), but there
are ways to bound the number of summands that must be checked so as to signifi-
cantly decrease the computational complexity. Srinivar and Shankar [13] used the
unconditional upper and lower bounds on f(n) to bound the number of summands,
obtaining an algorithm that runs in time O(nlog2(3)) < O(n1.59).

The fastest known algorithm runs in time O(n1.230175) and is due to J. Arias de
Reyna and J. van de Lune [5]. Also, the experimental data in [9] is based on an
algorithm that calculates f(n) for n up to n = 1012. They derive many interesting
results from their data, but they do not analyze the runtime of their algorithm. We
obtain both an overall improvement on the runtime of the J. Arias de Reyna and
J. van de Lune algorithm and a potential internal improvement to the workings of
the algorithm. The overall improvement is derived from running the analysis of [5]
in much higher bases, while the internal improvement gives a strong uniform bound
on the number of summands f(a) + f(n � a) that must be calculated for almost
all n. We detail the overall improvement in Section 2. We introduce the potential
internal improvement in Section 3 and test it in Section 4. We end the paper by
proposing a new approach for improving the current unconditional upper bound on
f(n).

2. Algorithmic Aspects

2.1. The de Reyna & van de Lune Algorithm

J. Arias de Reyna and J. van de Lune [5] developed code in Python to perform
the analysis of their algorithm, which they have generously shared with us. Addi-
tionally, Fuller has published open-source code [7] written in C to calculate integer
complexities. Using these, we have developed code1 in C that is comparable to J.
Arias de Reyna and J. van de Lune’s Python code. The heart of the code is the
calc count method, which calculates D(b, r) for varying values of b and r, where
D(b, r) is an upper bound on how much multiplying by b and adding r increases
the complexity of any given number. More precisely, we define D(b, r) to be the

1See the “calculate complexities.c” file at https://github.com/kcordwel/Integer-Complexity

INTEGERS: 19 (2019) 4

smallest integer such that

f(r + bn)  f(n) + D(b, r) (2)

for all n. As an example, notice that D(b, 0)  f(b), because we can always represent
b with f(b) 1’s and n with f(n) 1’s and then multiply these two representations to
achieve a representation of bn—and thus f(bn)  f(n) + f(b). Similarly, D(1, r) 
f(r) because we can represent r with f(r) 1’s and n with f(n) 1’s, and then add
these two representations to achieve a representation of n + r that uses f(n) + f(r)
1’s.

These integers D(b, r) are useful for bounding f(n) in the following way: [5]
defined Cavg as the infimum of all C such that f(n)  C log(n) for a set of natural
numbers of density 1 and showed that

Cavg 
1

b log(b)

b�1X

r=0

D(b, r). (3)

In this calculation, we refer to b as the base in which we are working. Our code
closely follows the logic of J. Arias de Reyna and J. van de Lune’s program, making
the following slight optimization.

Theorem 1. Take b = 2i3j where b < 1012 and i + j > 0. If r | b for 2  r < b,
then D(b, r) = f(b) + 1.

Proof. From the equality r + bn = r(1 + n · b
r), notice that:

f(bn + r)  1 + f(r) + f

✓
n · b

r

◆
 1 + f(r) + f(n) + f(

b

r
) (4)

From [9], we know that f(2v3w) = 2v + 3w for 2v3w < 1012 and v + w > 0. We
know that b = 2i3j , and since r divides b, r is of the form 2x3y for x  i, y  j.
This means that b/r is of the form 2i�x3j�y. Since r � 2, we have x + y > 0 and
since r < b, we have (i� x) + (j � y) > 0.

Then applying the result of [9] to both r and b
r , we obtain

f(bn + r)  1 + f(r) + f(n) + f

✓
b

r

◆

= 1 + 2x + 3y + f(n) + 2(i� x) + 3(i� y)
= 1 + 2i + 3j + f(n)
= 1 + f(b) + f(n).

(5)

This shows that D(b, r)  f(b) + 1.
Now we wish to argue that D(b, r) � f(b)+1. While this makes sense intuitively,

in order to be rigorous we do a computer aided proof2. Our computer calculations
2See the code in the “Thm2.1” folder at https://github.com/kcordwel/Integer-Complexity

INTEGERS: 19 (2019) 5

work as follows: First, we calculate the complexities of b + r for all b, r as in the
theorem. For the vast majority of the b, r, f(b + r) = f(b) + 1, meaning that
D(b, r) � f(b)+1 from the definition of D(b, r). However, there are 372 pairs of b, r
such that f(b+r) 6= f(b)+1. For these pairs, we do a second pass and calculate the
complexities of 2b + r. For all of the pairs, f(2b + r) = f(b) + 3 = f(b) + 1 + f(2),
meaning that D(b, r) � f(b) + 1.

J. Arias de Reyna and J. van de Lune [5] suggest that their algorithms will be
more powerful when implemented in C and Pascal. [5] proved that their algorithm
has running time O(N↵) where

↵ = �1 +
1

log b
log

b�1X

d=0

3
1
3 D(b,d)

!

. (6)

They calculated the runtime of their algorithm for bases 2n3m up to 3188646,
and found the best value of ↵ as

↵ =
log(48399164638047 + 31/3 · 33606823799088 + 32/3 · 23231513379231)

log(210 · 37)
� 1

⇡ 1.230175

in base 21037 = 2239488. Using C is advantageous because it runs much faster
than Python, and so we are able to calculate values for higher bases. We calculated
values for bases 2n3m  57395628. In base 21338 = 53747712, we find that the
runtime is O(n↵) where the value of ↵ is

log(50903564566217859+35271975106952037 · 31/3+ 24493392174530898 · 32/3)
log(21338)

�1,

so that the runtime is O(n1.222911236).

2.2. Improved Asymptotic Results

Probably Guy [8] was the first who remarked that while pointwise bounds seem
di�cult, it is possible to establish bounds that are true for almost all (in the sense
of asymptotic density 1) numbers. His method showed that f(n)  3.816 log3 n for
a subset of integers with density 1.

Using their definition of Cavg as the infimum of all C where f(n)  C log(n) for
a set of natural numbers of density 1, [5] showed that for any base b � 2

Cavg 
1

b log b

b�1X

r=0

D(b, r). (7)

INTEGERS: 19 (2019) 6

In base b = 2938, they obtain

Cavg 
166991500

2938 log(2938)
, (8)

so that f(n)  3.30808 log(n), or f(n)  3.63430 log3(n), for a set of natural num-
bers of density 1.

We find that in base 21139,

Cavg 
2326006662

21139 log(21139)
, (9)

so that f(n)  3.29497 log(n), or f(n)  3.61989 log3(n), for a set of natural num-
bers of density 1.

3. Possible Improvements via Balancing Digits

3.1. Balancing Digits

Our goal is to improve the algorithm for calculating complexity given in [5]. The
rate-limiting factor in this algorithm is checking, for all n  N , f(a) + f(n� a) for
all 1  a  kMax for some kMax that is specially calculated for each n. We will
show that we can give a strong uniform bound on the number of summands that
must be checked for almost all n.

We say that n 2 Z is digit-balanced in base b if each of the digits 1, . . . , b � 1
occurs roughly 1/b times in the base b representation of n, or digit-unbalanced if
some digits occur significantly more often than others. We will show that almost
all numbers are digit-balanced, although the exact threshold of variation that we
allow will depend on the base b. Finally, assuming that we have a set S of digit-
balanced numbers in base b, we will use Guy’s method to find that for any n 2 S,
f(n)  c log3(n) for some c. Then, using this bound on f(n) and assuming that
f(n) = f(a) + f(n� a), we are able to bound a, which, in turn, narrows the search
space that a reasonable algorithm has to cover.

3.2. Bounds on Digit-Balanced Numbers

Our main result is as follows.

Proposition 1. There exists a constant cb > 0, depending only on the base b, such
that

#
⇢
1 n N : max

1ib

����
number of digits of n in base b that are i

number of digits of n in base b
� 1

b

���� � "

�
 N1�cb"2

.

INTEGERS: 19 (2019) 7

Proof. The main idea behind the argument is to replace a combinatorial counting
argument by the probabilistic large deviation theory. Let N = bk, consider all
k-digit numbers in base b, and let Xi be a random variable such that Xi = 1 with
probability 1/b and 0 otherwise for 1  i  k. For any given digit 0  d < b, each
Xi gives the probability that this digit will appear in a fixed position i in the base
b representation of a number. Since we are considering k-digit numbers, we need to
understand the average value of X1 + · · ·+Xk and to analyze how close this average
is to 1

b . Let X = 1
k (X1 + · · ·+Xk). Next, we can use Hoe↵ding’s inequality, which

gives

P

✓
X � 1

b
� ✏

◆
 e�2k✏2 . (10)

We know that k ⇡ logb(N) = log(N)
log(b) , so:

e�2k✏2 = e�2✏2 log(N)
log(b) = (elog(N))�2✏2 1

log(b) = N
�2✏2
log(b) . (11)

So, the probability that a number with k digits in its base b representation has

some digits that appear more often than the average is less than or equal to N
�2✏2
log(b) ,

meaning that |S|  N · N
�2✏2
log(b) = N1� 2✏2

log(b) .

3.3. Bound on Number of Summands

Assume now that f(n) = f(n�a)+f(a) and that this is the optimal representation
using the least number of 1’s. We assume that f(n) = c log3(n) for some c > 0.
Our goal is to derive a bound on a. The main idea is to show that the logarithmic
growth implies that a cannot be very large (otherwise the growth of f(n) would be
closer to linear). Using the lower bound due to Selfridge [8], we attain:

c log3(n) � 3(log3(n� a) + log3(a)). (12)

This is equivalent to:

log3(n
c/3) � log3(n� a) + log3(a). (13)

Say that a = qn, where necessarily q  1
2 . Then we have:

log3(n
c/3) � log3((1� q)n · a). (14)

Exponentiating both sides and simplifying gives

nc/3�1

1� q
� a. (15)

Since q  1
2 , then 1� q � 1

2 , and so

INTEGERS: 19 (2019) 8

nc/3�1

1/2
� nc/3�1

1� q
� a, (16)

or:

2nc/3�1 � nc/3�1

1� q
� a. (17)

Thus, we need only check for values of a at most 2nc/3�1.

3.4. Binary Analysis

To see how our result works, we analyze it in the simplest possible base, which is
binary. Consider k-digit numbers less than N (so that k ⇡ log2(N)). The average
case in Guy’s method, illustrated in [8] and based on Horner’s scheme of representing
binary numbers, gives f(n)  5 log2(n)/2, or f(n) < 3.962407 log3(n). “Bad”
numbers in base 2 are those that have many 1’s, as that is when the representation
is rather ine�cient. If we move away from the average case to numbers which have,
say, 75% 1’s and 25% 0’s, then the constant in Guy’s method is

1
log(2)

(3 · .75 + 2 · .25) log(3) < 4.358647. (18)

This is already much worse than the original average case constant of 3.962407,
and so we need to stay much closer to the average case. In particular, the following
percentages of 1’s and 0’s give the following values for the constant in Guy’s method:

Percent 0’s Percent 1’s Constant
46 54 4.02581
47 53 4.00997
48 52 3.99411
49 51 3.97826

49.9 50.1 3.96399
49.99 50.01 3.962565

Consider numbers with at most 46% 0’s and 54% 1’s. The previous section a↵ords
a bound of a  2n4.02581/3�1  2n0.342 for such numbers. We want to understand
how often this case occurs. Recall that we are considering k-digit numbers. We
need to bound the number of times that 0 occurs at most 46k

100 times, or the number
of times that 1 occurs at least 54k

100 times. Say that Xi is the Bernoulli variable
corresponding to digit i, 1  i  k. Then P (Xi = 1) = 1

2 . Let Sk = X1 + · · ·+ Xk,
so that Sk represents the total number of 1’s in our number. Since 1

2 < 54
100 < 1, we

INTEGERS: 19 (2019) 9

may apply Theorem 1 from [6] to achieve the following bound:

P

✓
Sk �

54k
100

◆
 e�kD(54

100 || 1
2) (19)

where

D

✓
54
100

|| 1
2

◆
=

54
100

log
✓

2
✓

54
100

◆◆
+
✓

1� 54
100

◆
log
✓

2
✓

1� 54
100

◆◆
. (20)

Because k ⇡ log2(N), we get that

P

✓
Sk �

54k
100

◆
 N�D(54

100 || 1
2) 1

log 2 . (21)

In particular, then, there are at most N1� 1
log(2) ·D(54

100 || 1
2) < N1�.004622 “bad” num-

bers, i.e. we have the desired bound a  2n0.342 for the other > N .004622 numbers,
which is significant as N grows large. Call this set of numbers for which we have
this bound U .

Following the analysis in [5], Arias de Reyna and van de Lune’s algorithm has a
runtime of n↵ in base 2 where

↵ = �1 +
log(3D(2,0)/3 + 3D(2,1)/3)

log(2)
= �1 +

log(32/3 + 3)
log(2)

⇡ 1.3448. (22)

Recall that in their complexity proof, Arias de Reyna and van de Lune denote
the number of summands that must be checked for each n by kMax. Our bound on
the numbers in U compares well to [5]’s bound in that if kMax were uniform for all
numbers in [5], our bound would be lower on all u 2 U . More explicitly, in binary,
if kMax were uniform, then [5] would require checking summands up to ⇡ n0.3448

whereas we require checking summands up to ⇡ 2n0.342 for numbers in U .
Unfortunately, kMax is not uniform in this way, and so we cannot claim a defini-

tive improvement with our uniform bound on ↵. It is possible that some of the
u 2 U have a low value of kMax to begin with, and for such numbers our bound
may not a↵ord an improvement. Conversely, it is possible that our bound will im-
prove some numbers that are not in U . Overall, since kMax is not uniform, it is not
easy to theoretically compare our bound to [5]. Given this, and given that the ideal
bases are much larger than binary (which significantly complicates theoretical anal-
ysis), we performed a number of empirical tests to understand how our algorithm
compares to [5] in the general case.

4. Empirical Calculations

To see whether our method improves J. Arias de Reyna and J. van de Lune’s
algorithm in practice, we modified J. Arias de Reyna and J. van de Lune’s code

INTEGERS: 19 (2019) 10

by adding various precomputations and calculating how many numbers would be
improved with these precomputations3.

The first precomputation uses a greedy algorithm due to Steinerberger [12], which
gives that f(n)  3.66 log3(n) for most n. The recursive algorithm works as follows:
if n ⌘ 0 mod 6 or n ⌘ 3 mod 6, take n = 3(n/3) and run the algorithm on n/3.
If n ⌘ 2 mod 6 or n ⌘ 4 mod 6, take n = 2(n/2) and run the algorithm on n/2.
If n ⌘ 1 mod 6, take n = 1 + 3(n � 1)/3 and run the algorithm on (n � 1)/3. If
n ⌘ 5 mod 6, take n = 1 + 2(n� 1)/2 and run the algorithm on (n� 1)/2.

The method is as follows: First, run the greedy algorithm on all of the numbers
up to some limit and store the results in a dictionary. Then, use these values to
compute a bound on the number of summands for each number (using the formula
derived in Section 3.3). Store a counter that is initialized to 0. Next, run J. Arias
de Reyna and J. van de Lune’s algorithm. For each number, test whether the
precomputed summand bound is better than the summand bound in the original
algorithm. If an improvement is found, increment the counter. When we use this
algorithm to precompute summands, we improve 7153 numbers out of the first
200000, or less than 3.6% of numbers. If we compute complexities further, up to
2000000, we improve 60864 numbers, or less than 3.05% of numbers.

We can also combine Steinerberger’s algorithm with a stronger algorithm, due to
Shriver [11]. Shriver developed a greedy algorithm in base 2310. If we use the best
upper bound on complexities from Shriver and Steinerberger’s greedy algorithm, we
improve 11188 numbers out of 200000, or about 5.6% of numbers. If we compute
complexities up to 2000000, we improve 107077 numbers, or less than 5.36% of
numbers.

Shriver conjectures that his best algorithm, which uses simulated annealing, pro-
duces a bound of f(n)  3.529 log3(n) for generic integers. In fact, only 824 num-
bers up to 2000000 would be improved by assuming a uniform bound of f(n) 
3.529 log3(n). Of course, this is a purely theoretical result—if we were to actu-
ally introduce a uniform bound, then we would not be able to accurately calcu-
late complexities. If we become even more optimistic and use a uniform bound
of f(n)  3.5 log3(n), we would only potentially improve 4978 numbers out of the
first 2000000. Similarly, using f(n)  3.4 log3(n) would improve 124707 numbers
of 2000000, which is about 6.23%. If we venture significantly below Shriver’s con-
jecture of 3.529 log3(n) and use f(n)  3.3 log3(n) uniformly, then we start to see
a significant di↵erence—we would improve 726756 numbers of 2000000, or about
36%.

Overall, it seems that Arias de Reyna and van de Lune’s algorithm already has a
strong bound on the number of summands that are computed. It is possible that we
are encountering di�culties because kMax is not uniform, or it is possible that the
complexity of J. Arias de Reyna and J. van de Lune’s algorithm is significantly lower

3See the “ExperimentalResults” folder at https://github.com/kcordwel/Integer-Complexity

INTEGERS: 19 (2019) 11

than O(n1.223). Thus, while summand precomputing improves the complexity com-
putation for some numbers, given the overhead for performing precomputations and
the current speed of J. Arias de Reyna and J. van de Lune’s algorithm, introducing
a precomputation does not seem to yield an overall improvement to the algorithm.

5. Progress Towards an Unconditional Upper Bound

The current unconditional upper bound on complexity, f(n)  3 log2(x), is derived
from applying Guy’s method in base 2 to n. In particular, the most complex
numbers have binary expansions of the form 11 · · · 12 so that at each step, Guy’s
method requires three 1’s. The resulting representation is of the form 1+(1+1)[1+
(1 + 1)[· · ·]].

Say that n mod 3 ⌘ k. Instead of applying Guy’s method to n, what if write
n = k + (1 + 1 + 1)(n� k)/3 and then apply Guy’s method to (n� k)/3? Then in
the case where n = 11 · · · 12, (n� k)/3 is either of the form 1010 · · · 1 or 1010 · · · 0,
and applying Guy’s method to (n�k)/3 gives f((n�k)/3)  1+2.5 log2(n). Using
this, we find that f(n)  6 + 2.5 log2(n), which is a significant improvement over
f(n)  3 log2(n).

This suggests the following method: If the binary representation of n contains
more than a certain percentage of 1’s, then write n as k + (1 + 1 + 1) · (n � k)/3
and apply Guy’s method instead to (n�k)/3. Empirically, in most cases, when the
binary expansion of n contains a high percentage of 1’s, (n�k)/3 has a significantly
lower percentage of 1’s. However, there are some examples where this fails. For
example, if n = 2102� 2100� 2, then both the binary expansion of n and the binary
expansion of (n � 1)/3 have a high percentage of 1’s. Notably, if we repeat this
division process and consider ((n � 1)/3)/3, then we will obtain a number with
a nice binary expansion. Accordingly, we say that 2102 � 2100 � 2 requires two
iterations of division by 3.

Some numbers require numerous iterations of division by 3 before their binary
expansions are nice. For example, n = 23000 � 22975 � 22807 � 1 requires nine
iterations. These sorts of counterexamples seem to follow some interesting patterns.
Let ni denote the number obtained after i iterations of division by 3 so that n0 = n,
n1 = (n0 � (n0 mod 3))/3, etc. In general, it seems that the number of iterations
that are necessary to produce a “nice” binary expansion is tied to the number of
iterations for which n ⌘ 2 mod 3. For example, when n = 23000� 22975� 22807� 1,
then n0 ⌘ n1 ⌘ n2 ⌘ · · · ⌘ n7 ⌘ 2 mod 3, but n8 ⌘ 0 mod 3, and n9 has the first
“nice” binary expansion.

It should be noted that there is no reason to only employ division by 3. For
example, when n = 23000 � 22975 � 22807 � 1, n mod 11 ⌘ 5, and (n� 6)/11 has a
nice binary expansion. It should be noted that n ⌘ 4 mod 5 and n ⌘ 6 mod 7, and

INTEGERS: 19 (2019) 12

the binary representations of (n�4)/5 and (n�6)/7 both contain a large percentage
of 1’s.

In general, then, performing this process of division by appropriate numbers be-
fore applying Guy’s method is a promising strategy for obtaining an improvement
on the unconditional upper bound on f(n). We believe that it could be an inter-
esting problem to make these vague heuristics precise and understand whether this
could give rise to a new e↵ective method of giving explicit constructions of n with
sums and products that use few 1’s.

Acknowledgments. We would like to thank Professor Arias de Reyna for gener-
ously sharing the code that he developed with Professor van de Lune. Thank you
to the SMALL REU program, Williams College, and the Williams College Science
Center where the bulk of this work took place. We would like to thank Professor
Amanda Folsom for funding from NSF Grant DMS1449679 as well as SMALL REU
for funding from NSF Grant DMS1347804, the Williams College Finnerty Fund,
and the Clare Boothe Luce Program. The fourth listed author was supported by
NSF grants DMS1265673 and DMS1561945, the fifth listed author was supported
by Simons Foundation Grant #360560 and the seventh listed author was supported
by NSF Grant DMS1763179 and the Alfred P. Sloan Foundation. Finally, we thank
the anonymous referee for many helpful suggestions that significantly improved the
paper.

References

[1] H. Altman, Integer complexity and well-ordering, Michigan Math. J. 64 (2015), no. 3,
509-538.

[2] H. Altman, Integer complexity: Representing numbers of bounded defect, Theoret. Comput.
Sci. 652 (2016), 64-85.

[3] H. Altman, Integer complexity: Algorithms and computational results, arXiv:1606.03635
[math.NT].

[4] H. Altman and J. Zelinsky, Numbers with integer complexity close to the lower bound,
Integers 12 (2012), no. 6, 1093-1125.

[5] J. Arias de Reyna and J. van de Lune, Algorithms for determining integer complexity,
arXiv:1404.2183 [math.NT].

[6] R. Arratia and L. Gordon, Tutorial on large deviations for the binomial distribution, Bull.
Math. Biol. 51 (1989), no. 1, 125-131.

[7] M. N. Fuller, C-Program to Compute A005245, Feburary 2008.
http://oeis.org/A005245/a005245.c.txt.

[8] R. K. Guy, Unsolved problems: some suspiciously simple sequences, Amer. Math. Monthly
93 (1986), no. 3, 186-190.

INTEGERS: 19 (2019) 13

[9] J. Iraids, K. Balodis, J.Cerenoks, M. Opmanis, R. Opmanis, and K. Podnieks, Integer com-
plexity: experimental and analytical results, Scientific Papers University of Latvia, Com-
puter Science and Information Technologies 787 (2012), 153-179.

[10] K. Mahler and J. Popken, On a maximum problem in arithmetic (Dutch), Nieuw Arch.
Wiskd. 3 (1953), no. 1, 1-15.

[11] C. Shriver, Applications of Markov chain analysis to integer complexity, arXiv:1511.07842
[math.NT].

[12] S. Steinerberger, A short note on integer complexity, Contrib. Discrete Math. 9 (2014), no.
1.

[13] V. V. Srinivas and B. R. Shankar, Integer complexity: breaking the ✓(n2) barrier, World
Academy of Science, Engineering and Technology 2 (2008), no. 5, 454-455.

