PRIME POWER DIVISORS OF MERSENNE NUMBERS AND WIEFERICH PRIMES OF HIGHER ORDER ### Ladislav Skula¹ Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic skula@fme.vutbr.cz Received: 12/6/17, Revised: 8/16/18, Accepted: 2/2/19, Published: 3/15/19 #### Abstract The equivalence is presented between a Wieferich prime p of order n and the divisibility of the Mersenne number M_q by the power p^{n+1} . #### 1. Introduction Throughout this paper, a, n, and m will denote positive integers, with $m \geq 2$, and p an odd prime. If the integer a is not divisible by p, then Fermat's Little Theorem states that $$a^{p-1} \equiv 1 \pmod{p}$$. This theorem guarantees that the number $$q(p,a) = \frac{a^{p-1} - 1}{p}$$ is an integer which is called the *Fermat quotient of p with base a*. This notion can be extended for a composite integer m and an integer a where m and a are relatively prime integers. By Euler's Theorem we have $$a^{\varphi(m)} \equiv 1 \pmod{m}$$. The integer $$q(a,m) = \frac{a^{\varphi(m)} - 1}{m}$$ is called the Euler quotient of m with base a, where φ means Euler's totient function. A whole range of results on Fermat and Euler quotions is known, the following Proposition on the "logarithm property" being of special importance. ¹ Mathematics Subject Classification. Primary: 11A41; Secondary: 11A07 Keywords and phrases. Wieferich prime of order n, Mersenne number, Fermat and Euler quotient INTEGERS: 19 (2019) **Proposition 1.1.** Let b be an integer, (a, m) = (b, m) = 1. Then, $$q(a \cdot b, m) \equiv q(a, m) + q(b, m) \pmod{m}$$. 2 **Remark 1.2.** For m = p (p prime), this property was proved by Eisenstein [4], for m odd ($m \ge 1$) by Lerch [5], and generally by Agoh, Dilcher, Skula [1], Proposition 2.1 (a). Wieferich [7], in his criterion on the first case of Fermat Last Theorem for exponent p, used the following property of p: $q(2,p) \equiv 0 \pmod{p}$, or equivalently $2^{p-1} \equiv 1 \pmod{p^2}$. For this reason, p with this property is called a Wieferich prime. At present, only two Wieferich primes, 1093 and 3511, are known and no prime $p < 6.7 \times 10^{15}$ except these primes is Wieferich [3]. In [1], Definition 1.3, the notion of Wieferich prime was generalized as follows. **Definition 1.3.** Let m and a be relatively prime integers. We say that m is a Wieferich number with base a if $q(a, m) \equiv 0 \pmod{m}$. In the present paper we will only be concerned with the case $m = p^n$ and a = 2. **Definition 1.4.** Let the prime p be a Wieferich prime. Then p is called a Wieferich prime of order n if $q(2, p^n) \equiv 0 \pmod{p^n}$, or equivalently $2^{p^{n-1}(p-1)} \equiv 1 \pmod{p^{2n}}$. From [1], Corollary 5.2, $(\operatorname{ord}_p(q(2,p^n)) = \operatorname{ord}_p(q(2,p)))$ we get any Wieferich prime is a Wieferich prime of order 1. (S.Proposition 2.2.) The goal of the paper is to present the connection of a Wieferich prime p of order n with the divisibility of the Mersenne number $M_q = 2^q - 1$ by the prime power p^n , where q means a prime. A. Rotkiewicz [6], and CH. K. Caldwell [2] proved that, if p is a prime and p^2 divides a Mersenne number M_q for a prime q, then p is a Wieferich prime. In the present paper we generalize this result and prove the other direction of this assertion as well. # 2. Auxiliary Assertions **Proposition 2.1 (Statement on the Euler quotient for two bases).** Let m, N be relatively prime positive integers, and let r, Q be integers $1 \le r < m, Q > 0$ with the property $N = m \cdot Q + r$. Then, $$N \cdot q(N, m) \equiv \varphi(m) \cdot Q + r \cdot q(r, m) \pmod{m}$$. *Proof.* Suppose that m, N, r, Q are integers fulfilling the conditions in the Proposition. We have $$N^{\varphi(m)} = \sum_{k=0}^{\varphi(m)} {\varphi(m) \choose k} (mQ)^k r^{\varphi(m)-k} \equiv r^{\varphi(m)} + \varphi(m) mQ^{\varphi(m)-1} \pmod{m^2}.$$ Since $q(N,m) = \frac{N^{\varphi(m)}-1}{m}$ and $N \equiv r \pmod{m}$, we get $$mq(N,m) \equiv r^{\varphi(m)} - 1 + \varphi(m) mQ N^{\varphi(m)-1} \pmod{m^2},$$ therefore $$q(N,m) \equiv q(r,m) + \varphi(m)QN^{\varphi(m)-1} \pmod{m},$$ and hence $$Nq(N,m) \equiv \varphi(m)Q + rq(r,m) \ (\text{mod } m).$$ By [1], Corollary 5.2, we get: **Proposition 2.2.** We have $\operatorname{ord}_p(q(2,p)) \geq n$, or equivalently $2^{p-1} \equiv 1 \pmod{p^{n+1}}$, if and only if p is a Wieferich prime of order n. **Lemma 2.3.** Let q be a prime, $p^n|M_q$, and let δ be the order of $2 \pmod{p^{n+1}}$. Then $\delta = q$ if and only if $p^{n+1}|M_q$; and $\delta = q \cdot p$ otherwise. *Proof.* We have $2^{\delta} \equiv 1 \pmod{p^{n+1}}$ and $2^q \equiv 1 \pmod{p^n}$. Therefore, the order of $2 \pmod{p^n}$ is q and $2^{\delta} \equiv 1 \pmod{p^n}$, hence $q|\delta$. There exists a positive integer T such that $2^q = 1 + p^N T$, thus $$2^{qp} = \sum_{k=0}^{p} {p \choose k} p^{nk} \cdot T^k \equiv 1 \pmod{p^{n+1}},$$ and then $\delta \in \{q, p, q \cdot p\}$. If $\delta = p$, then $1 \equiv 2^{\delta} = 2 \cdot 2^{p-1} \equiv 2 \pmod{p}$, which is a contradiction. # 3. Main Theorem **Main Theorem 3.1.** Let q be a prime and let p^n divide M_q , where $M_q = 2^q - 1$ is a Mersenne number. Then, the following statements are equivalent: - (a) p^{n+1} divides M_q , - (b) p is a Wieferich prime of order n, - (c) the order of $2 \pmod{p^{n+1}}$ is q. *Proof.* We show the implication (a) \Rightarrow (b). Let p^{n+1} divide M_q and let the order of 2 (mod p^{n+1}) be δ . Then, by Lemma 2.3, $\delta = q$, hence $2^q \equiv 1 \pmod{p^n}$. Using Euler's Theorem, we get $$2^{\varphi(p^{n+1})} \equiv \ 1 \ (\text{mod} \ p^{n+1}), \ \text{therefore} \ 2^{p^n(p-1)} \equiv 1 \ (\text{mod} \ p^{n+1})$$ and $q|p^n(p-1)$, therefore q|(p-1). Then, there exists a positive integer x such that $p-1=q\cdot x$. Hence $2^{p-1}=2^{q\cdot x}\equiv 1\pmod{p^{n+1}}$ and $\operatorname{ord}_p(2^{p-1}-1)\geq n+1$, and therefore $$\operatorname{ord}_p \frac{2^{p-1} - 1}{p} \ge n.$$ By Proposition 2.2, we get that p is a Wieferich prime of order n. We prove the implication (b) \Rightarrow (a). Assume that p is a Wieferich prime of order n. Set $m = p^n$ and $N = 2^q$. Since $2^q \equiv 1 \pmod{p^n}$, there exists a positive integer Q such that $N = m \cdot Q + 1$. Using Proposition 2.1 (Euler quotient for two bases) and Proposition 1.1 (logarithm property), we obtain $$q \cdot 2^q \cdot q(2, p^n) \equiv -p^{n-1} \cdot Q \pmod{p^n}$$. From the assumption that p is a Wieferich prime of order n, we get the congruence $0 \equiv q(2, p^n) \pmod{p^n}$, therefore p|Q and then $$2^q = p^{n+1} \cdot \frac{Q}{p} + 1 \equiv 0 \pmod{p^{n+1}},$$ hence $p^{n+1}|M_q$. Lemma 2.3 gives the equivalence of statements (a) and (c). \Box ## References - T. Agoh, K. Dilcher and L. Skula, Fermat Quotients for Composite Moduli, J. Number Theory, 66 (1997), 29-50. - [2] CH. K. Caldwell, Proof that all prime-squared Mersenne divisors are Wieferich. https://primes.utm.edu/notes/proofs/SquareMerDiv.html. - [3] F. G. Dorais and D. Klyve, A Wieferich prime search up to $p < 6.7 \times 10^{15}$, J. Integer Seq. 14 (2011), 1-14. - [4] G. Eisenstein, Eine neue Gattung, zahlentheoretischer Funktionen, welche von zwei Elementen abhängen und durch gewisse lineare Funktional-Gleichungen definiert werden, Math. Werke, Gotthold Eisenstein, Band II, Chelsea, New York, 2nd ed. 1989, pp.705-711(710). - [5] M. Lerch, Zur Theorie des Fermatschen Quotienten $(a^{p-1}-1)/p=q(a)$, Math. Ann. **60** (1905), 471-490. - [6] A. Rotkiewicz, Sur les nombres de Mersenne dpourvus de facteurs carrs et sur les nombres naturels n tels que $n^2|2^n-2$, Matem. Vesnik (Beograd), $\mathbf{2}(17)$, (1965), 78-80. - [7] A. Wieferich, Zum letzten Fermat'schen Theorem, J. Reine Angew. Math. 136 (1909), 293-302.