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Abstract

A primitive Pythagorean triple is a 3-tuple of natural numbers sharing no nontrivial
common factors that satisfies the Pythagorean Theorem. Hall (1970) and Price
(2008) found distinct perfect infinite ternary trees whose vertex sets are precisely all
primitive Pythagorean triples. Using elementary tools, we will construct an infinite
tree whose vertex set consists of all nonnegative primitive Pythagorean quadruples—
i.e., 4-tuples (d, a, b, ¢) of natural numbers having no nontrivial common factors that
satisfy d? = a? +b%+c2. We will also present some interesting subtrees with curious
properties.

1. Introduction

A Pythagorean triple is an integer 3-tuple (c,a,b) that satisfies the equation ¢? =
a? + b2, such as (15,—12,9) and (26,24,10). A triple is said to be a primitive
Pythagorean triple, or PPT, if ¢, a, and b share no common nontrivial factors, such
as (5,4,3) and (13,12, —5). In his classic work The Elements, Euclid characterized
all PPTs as follows.

Theorem 1. Every ordered pair (m,n), m > n > 0, of relatively prime integers of
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opposite parity generates a PPT, namely (m? 4+ n?,2mn, m? —n?), and every PPT
corresponds to a unique such ordered pair (m,n).

We will often depict a PPT as a column vector. That is, the ordered triple
c
(¢,a,b) and the column vector |a| represent the same PPT.
b

In 1934, Berggren [2] showed that the entire set of PPTs with positive integer
entries can be thought of as the vertex set of an infinite perfect ternary tree with
root (5,4, 3). Every vertex in the tree has three children, each formed by multiplying
a given PPT by one of three matrices. His results were later rediscovered in 1963 by
Barning [1] and in 1970 by Hall [6]. A related complete tree of PPTs was also found
in 2008 by Price [7]. Price used the set P = {4, B,C} of matrices given below to
construct his PPT tree, which is given in Figure 1.

3 1 -2 3 -1 2 3 1 2
A=1|2 2 —2|,B=|2 -2 2|.c=1|2 2 2
1 1 2 1 1 2 1 -1 2
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-11 40,9) (37,12, ) (61,60, 11 29 20,21) ( 3,48, 55 89 80, 39) (85,84, 13 (65, 16, 63) (113,1127 15)
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Figure 1: Price’s PPT Tree

We can summarize this information on primitive Pythagorean triples as follows.
The well-known methods for generating all PPTs include a simple number theo-
retic approach (the 2-parameter formulas of Euclid) and a simple matrix algebra
approach (the 3-matrix family P = {A, B,C} of Price). Both yield a complete set
of nonnegative PPTs - with no duplicates - using elementary tools. One could also
say that Price created a nice picture of a nice representative set of PPTs, and he
did so in a nice, elegant and yet simple manner.

A Pythagorean quadruple is a set of four integers (d,a,b,c) that satisfy the
equation d? = a? + b2 + 2, such as (14,12, —6,4) and (18,8,8,14). The quadruple
is said to be a primitive Pythagorean quadruple, or PPQ), if d,a,b and ¢ share no
common nontrivial divisors such as (9,—4,4,7) and (3,2,2,1). There is a not-so-
well-known way to generate all PPQs [3] that is similar to Euclid’s well-known
formulas for generating PPTs.

Theorem 2. (Carmichael, 1915) Every PPQ is of the form (m?+n2+p?+q¢?, 2mq+
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2np, 2ng — 2mp, m? +n? — p? — ¢*) where m,n, p, q are relatively prime nonnegative
integers and m+n+p+qg=1 (mod 2).

It should be noted that there is no obvious ordering of the generating 4-tuples
(m,n,p,q) used in Carmichael’s formulas, unlike the ordering of the pairs of gener-
ators (m,n) that appear in Euclid’s formulas.

One may contrast these elementary perspectives with the more advanced results
(see [4], [5]) that represent the entire family of PPTs as the orbit of (1,0,1) under a
specific group action. These approaches take advantage of more complicated math-
ematical machinery, such as the power of Lie algebras. However, these approaches,
while they yield the entire set of PPTs, do not differentiate between two or more
PPTs that refer to the same geometric object. That is, a triangle with “side lengths
described by the 3-tuple” (5,4, 3) is indistinguishable from the triangle with “side
lengths” described by the 3-tuple (3,5, —4).

These observations led us to ponder the following question: is there an elementary
way to generate all nonnegative primitive Pythagorean quadruples? In particular, is
it possible—mimicking the results of Price—to easily construct a nice complete tree
of nonnegative primitive Pythagorean quadruples? It turns out that the answer to
this question is yes, but it is a complicated yes. The complete tree we constructed,
while lacking symmetry, possesses many surprising secrets.

The rest of this paper is structured as follows: in the next section, we will
present background information of Hall’s complete tree of primitive Pythagorean
triples. Next, we will provide a new proof of Hall’s result. We will then present
the proof that our infinite tree of primitive Pythagorean quadruples is complete.
Following this, we will describe the construction of our complete infinite tree of all
such quadruples. Finally, we will give just a few of the many interesting subtrees
hidden in this tree. These special subtrees are characterized by tree structure, or
by rate of generation, or by properties of their vertex sets.

2. PPT Background Information

Now that we have defined PPTs and PPQs as well as shown Price’s infinite tree of
PPTs, it is worth our time to discuss Hall’s infinite tree of PPTs. Hall used the set
of matrices H = {Ho, Ha, H3}, provided below, to construct his complete infinite
ternary tree of PPTs, which appears in Figure 2:

3 2 2 3 -2 2 3 2 =2
Hy=12 1 2|,Hy=1|2 -1 2|,Hs= 1|2 1 =2
2 21 2 -2 1 2 2 -1

It is easy to show that any PPT (written as a column vector) multiplied on the
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(5,4,3)
.
(17,8,15) (29,20, 21) (13,12,5)
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Figure 2: Hall’s PPT Tree

left by any of Hall’s matrices always yields another PPT. For instance, given an
arbitrary PPT (¢1, a1, b1), note that

3 2 2 C1 301 + 20,1 + 2b1 C2
HO' (cl,al,bl) =12 1 2]- ay| = 201+a1+2b1 = |02
2 21 by 2¢1 + 2aq + by b

Now observe that

c3 = (3c1 + 2a1 + 2b1)?
= 90% + 4a% + 4b% + 8a1by + 12c1aq + 12¢1b¢
= (8¢ + c?) + 4a? + 4b7 + 8ayby + 12¢1a1 + 12¢1b;
= 8c§ + (a2 + b%) + 4a% + 4b% +8a1by + 12¢ci1a1 + 12¢1 b4
=8c¢% + 5a% + 5b% + 8a1by + 12c1a; + 12¢1by
= (4¢3 + a3 + 4b7 + 8¢y by + 4ajcy + 4arby)
+ (40% + 4a% + b% + 8cra1 + 4bicy + 4aby)
= (2¢; + a1 + 2b1)? + (2¢; + 2a; + by)?

=al + b3

Thus, (c2, as, bs) is a Pythagorean triple. To show (¢, ag, bs) is primitive, assume
that each of ag, by, co is divisible by some prime p. Then p divides any linear
combination of as, ba, and co. In particular,

p|2¢o + 3az = p|2(3c1 + 2a1 + 2b1) + 3(2¢1 + aq + 2by)
= p|(661 + 4aq + 4b1) — (601 + 3a1 + 61)1)
= p|a1 — 2b1.

Similarly,

p|a2 — b2 = p|(201 + a1 + 2b1) — (261 + 2(11 + bl)
= p| — a1 + by.
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But if p|la; — 2b; and p| — a1 + by, then p divides their sum; that is, p|(a; — 2b1) +
(—a1 + b1), or p| — by, or p|by. A similar computation shows that p|a; and hence
pler.

This is a contradiction, since (c1,a1,b1) is primitive. Therefore, (co,az,bs) is
primitive and the result follows. The remaining cases for PPTs generated by Hs
and Hs are similar and left to the curious reader.

It should be noted that the only non-root PPT that occurs in the same location
in the complete PPT trees of Hall and Price is (89,80, 39). In general, most PPTs
appear in different levels of the two trees. The remainder of this section will focus
on Hall’s tree and his generating matrices.

The set of all PPTs can be thought of, more generally, as the orbit of the PPT
(1,0,1) under the action of Hy together with the set of all matrices formed by negat-
ing and/or swapping columns of Hy. But this action generates up to 48 different
but equivalent representatives of each PPT—think (13,12,5) vs. (13,—12,—5) vs.
(—=12,-13,5), etc.—which motivates the need for an equivalence relation on the set
of all PPTs. To this end, given PPTs (¢, a,b) and (¢/,a’,b"), we say that

(¢,a,b) ~ (', d’,b) if and only if {|c], [a], B[} = {[], @], [b']}.

It then follows that any PPT of the form (c,0,b) is equivalent to the “trivial”
PPT (1,0,1).

In his proof, Hall applied a descent argument to Euclid’s generating formulas
to show that the positive integer representation of every PPT equivalence class
appears exactly once in his tree. More precisely, he showed that the PPT generated
by (m,n) is the parent of the PPTs generated by (2m — n,m), (2m + n,m), and
(m+2n,n). He used the inherent structure of all such ordered pairs (m,n) to prove
his tree contains each PPT exactly once.

Recall that Carmichael’s generating formula for PPQs takes an integer 4-tuple
(m,n,p,q) as its argument, whereas Euclid’s generating formula for PPTs takes
an integer 2-tuple (m,n). We also mentioned that there is no clear ordering to
the tuples (m,n,p,q) as there is for the tuples (m,n). So it is probable that an
argument similar to the above cannot be applied to PPQs. As a result, a new
argument must be found for PPTs and subsequently applied to PPQs.

3. A New PPT Tree Proof

We will now present a different proof of Hall’s result, based on the inverses of the
elements of H. Unlike Hall, we will include the trivial PPT (1,0,1) as the root of
our complete PPT tree. To begin, note that
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3 -2 -2 3 -2 -2 3 -2 -2
Hi'=|-2 1 2|,H'=|2 -1 -2|,H'=|-2 1 2
-2 2 1 -2 2 1 2 -2 -1

Definition 1. Given any z,y € {—1,1} with  + y > 0, an arbitrary element H,
of H is denoted

3 2z 2y 3 -2 =2
H.,=|2 x 2y|,andthus H;'= |2z a2 2z
2 2z 0y -2y 2y y

Given any ¢ € N, for convenience, we will often denote the PPT (¢;, a;,b;) as the
vector t;.

Lemma 1. Given any PPT (c1,a1,b1), if a1 # 0, there exists an H € H such that
H='-t; =ty, where ty is a nonnegative PPT equivalence class representative and
Ccy < Cyp.

Proof. Let HZ! act on t,. This yields

3 -2 =2 C1 301 — 2a1 — 2b1 C2
=2z = 2z|-|a| = |x(-2c14+a1+2b1)| = |az].
—2y 2y Y by y(—261 + 2a1 + bl) by

Note that 22 = y? = 1. Using the fact ¢ = a? + b3, it then follows that

c3 = (3c; + 2a; + 2by)?
= 90% + 4a% + 4b% 4+ 8a1b1 + 12c1a1 + 12¢1 b1
= (8¢2 + ¢?) + 4a? + 4b% + 8ayby + 12¢1a1 + 12¢1b;
=8¢t + (a2 + %) + 4a? + 4b3 + 8a1by + 12¢1a1 + 12¢1b;
=8¢} + 5a3 + 5b7 + 8arby + 12¢1a1 + 12¢1b;
= (4¢2 + a? + 4b% + 8c1by + dajcy + darhy)
+ (42 + 4a? + 0?2 4 8cray + 4bicy + 4arby)
= (=2c1 + a1 +2b1)* + (—2¢1 + 2a1 + by))?
= (2(=2¢1 + a1 + 2b1))% + (y(—2¢1 + 2a; + by))?
= a3 +b3.
Thus, (c2, az, bs) is a Pythagorean triple. To show (¢, ag, bs) is primitive, assume

that each of ag,bs, c2 is divisible by some prime p (note the values of x and y do
not affect divisibility). Then p divides any linear combination of as, be, and cs. In
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particular,
p|2c2 + 3as = p|2(3c1 — 2a1 — 2b1) + 3(—2¢1 + a1 + 2b7)
= p‘(GCl - 4a1 — 4b1) + (*601 + 3(11 + 6b1)
= p\ — a1 + 2by.
Similarly,

plag — ba = p|(—2¢1 + a1 +2b1) — (—2¢1 + 2a1 + b1) = p| — a1 + by.

But if p| — a1 +2b; and p| — a1 + b1, then p divides their difference; that is, p|(—a1 +
2b1) — (—ay1 + b1), or p|by. A similar computation shows that pla; and hence pl|c;.
This is a contradiction, since (c1,a1,b1) is primitive. Therefore, (co,as,bs) is
primitive.
Now, suppose c3 > ¢;. Then

3c1 —2a1 —2by > c1 = 2¢1 > 2a; +2bp =1 > a; +b :>C§ Za§+2a1b1 +b%
= cf > 2a1by +C?
= 0> 2a1b;.

This is a contradiction, since both a; and by are positive. Thus, co < ¢;. O]

From the above lemma, it is clear that every positive PPT equivalence class
representative that appears in the tree must have a parent in the tree. We shall
soon see that every such parent is unique.

Next, we want to show that there is a unique root of the PPT tree, (i.e., a unique
PPT with no parent in the tree.) This will prevent the possibility of the existence
of multiple PPT trees having disjoint vertex sets. Ideally, all PPTs would have a
unique ancestry path back up to a singular root. We formalize this concept of a
parent-less PPT in the following definition.

Definition 2. A terminating PPT is any PPT (v, «, 8) with the property that, for
all H € H, the action of H~! on (v, , 3) either leaves (7, a, 3) unchanged or yields
a PPT equivalence class representative that contains at least one negative integer.

For instance, (1,0, 1) is a terminating PPT since

It then follows that the process of traveling from a vertex to its parent in Hall’s
PPT tree via multiplying the PPT by a unique H ! will eventually terminate at a
PPT with no parent.
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The contrapositive of the last lemma allows us to conclude that (1,0,1) is the
only terminating PPT. Recall that any PPT of the form (d,0,c) is equivalent to
(1,0,1).

Corollary 1. Given a PPT (c1,a1,b1), if, for every H € H, H= ' - t; = ty implies
that either ¢; = co or ty is not a PPT, then a; = 0. It then follows that (1,0,1) is
the only terminating PPT.

Lemma 2. The matriz H from Lemma 3.1 is unique.

Proof. Given an arbitrary non-terminating PPT (c1, aq1,b1), consider

C1 3 -2 =2 C1 301 — 2(11 — 2b1 C2
H' |l =|-20 2 22| |a1| = |2(—2c1+a1+2b1)| = |az]|.
by -2y 2y oy by y(—2¢1 + 2a1 + by) by

For any real number n, we define

0 ifn=0
sgn(n) = £ ifn#0

In|

Observe that each of co, a2, and by are nonnegative if and only if the following
three statements hold:

0 S 301 - 2&1 - 2b1
x = sgn(—2c; + a1 + 2by)
y = sgn(—2c1 + 2a1 + by).

This implies that there is a unique ordered pair (x,y) such that (cq, as, be) contains
only nonnegative integers. Thus, the matrix H from Lemma 3.1 is unique. O

The above result implies that every internal vertex in the tree has a unique par-
ent. That is, given any nonterminating PPT ¢, the set {Ho_l -t, H2_1 -t, H3_1 -t}
contains exactly one nonnegative PPT equivalence class representative, and exactly
two PPTs with at least one negative entry.

Lemma 3. If (¢,a,b) is a PPT with (¢,a,b) # (1,0,1), then there exists a unique
sequence of matrices S1,S2, ..., Sy, with each S; € H such that

1
St -Syt.syt. =10
1

Q0O

Proof. By Lemma 3.2, given any PPT (¢, a1, b1), there exists a unique S; € H such
that Sfl- (c1,a1,b1) = (c2,a9,b2) , where (ca,a2,b2) is a PPT and 0 < ¢ < ¢1. If
(c2,a2,b2) = (1,0,1), then we are done.
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If not, there exists a unique Sy € H such that S’;l- (c2,a2,b2) = (c3,as,bs),
where (c3,a3,b3) is a PPT and 0 < ¢3 < ¢ < ¢1. If (c3,a3,b3) = (1,0,1), then we
are done.

Continuing in this manner, since the values of ¢; form a strictly decreasing se-
quence of positive integers, this process must end after a finite number of steps at
a minimal value for ¢;, namely ¢; = 1, since (1,0, 1) is the only terminating PPT.
Therefore, there exists an n € N such that S, (¢, an,bn) = (Cnt1, Gni1,bny1) =
(1,0,1). O

Since the sequence of inverse matrices that lead a PPT to the root is unique, it
follows that every PPT equivalence class appears exactly once in Hall’s PPT tree.
Combining the results above yields the following.

Theorem 3. The Hall PPT tree contains every PPT equivalence class exactly once,
and each representative is the unique nonnegative PPT in its equivalence class.

In the next section, we will generalize these ideas to integer 4-tuples, and describe
how to construct a complete tree of appropriately-chosen Pythagorean quadruples.

4. PPQ Background Information

Recall that a Pythagorean quadruple is an ordered set of four integers (d,a,b,c)
that satisfy the equation d? = a? + b? + ¢?, such as (14,6,12,4). The quadruple
is said to be a primitive Pythagorean quadruple, or PPQ, if d,a,b and ¢ share no
common nontrivial divisors, such as (7,3, —6, 2).

We will often depict a PPQ as a column vector. That is, the ordered quadruple
d

(d,a,b,c) and the column vector represent the same PPQ.

a
b
c
We define an equivalence relation ~ on the set of all PPQs in the following

manner: given PPQs (d, a,b,c) and (d',a’, b, ), we say that
(d,a,b,c) ~ (d',a’,b', ') if and only if {|d[, [al, |b], |c[} = {[d[, [a'], V'], |[ }.

It then follows that any PPQ of the form (d, 0,0, c) is equivalent to (1,0,0,1).

Kac [5] has shown that all variations of the following 4 x 4 matrix (that is, all
versions found by swapping and/or negating columns) can be used to generate all
PPQs:
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2 1 1 1
10 1 1
Q°_1101
1110

However, we have found that, among the 384 possible variations of matrix @y,
only 7 such matrices are required to construct an infinite tree of PPQs. This set of
matrices is denoted

Q ={Qo,Q2,Q3,Q4,Q23,Q34, Q24 }.

Note that the nonzero matrix subscripts denote the columns of Qg that are negated.
That is,

2 1 1 1 2 -1 1 1 2 1 -1 1
1 0 1 1 1 0 1 1 1 0 -1 1
Q°_1101’Q2 1—101’Q3_1101’
1 110 1 -1 1 0 11 -1 0
2 1 1 -1 2 -1 -1 1
1 01 —1 1 0 -1 1
Q=17 17 0 —1"¥==|1 1 o 1|
1 11 0 1 -1 -1 0
2 -1 1 -1 2 1 -1 -1
1 0 1 -1 1 0 —1 -1
Qu=1y 4 g [ @=]1 1 ¢ _
1 -1 1 0 11 -1 0

We have found that the following four different types of PPQs are required to
describe the structure of our PPQ tree.

Definition 3. The PPQ (d,a,b,c) is called a twin PPQ if a = b, that is, if the
PPQ is of the form (d,a,a,c).

Definition 4. The PPQ (d, a, b, ¢) is called a trivial PPQ if b = 0 and hence (d, a, ¢)
is a PPT.

For instance, both (3,2,2,1) and (9,4,4,7) are twin PPQs, whereas (25,24,0,7)
and (13,12,0,5) are trivial PPQs.

It can be shown that, for any PPQ (d, a, b, ¢), it is a child of a trivial PPQ if and
only if d = a + ¢. However, the proof of this fact is left to the curious reader. We
will use this fact to justify the following definition.
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Definition 5. The PPQ (d,a,b,c) is called a child of a trivial PPQ if d=a+ c.

Example 4.1. For instance,

5 2 11 11 [5 17
40 |1 0 1 1| |4 |8
Q- 1ol =11 1 0 1] |o| = |12
3 111 0| |3 9

As a result, (17,8,12,9) is a child of a trivial PPQ, namely a child of (5,4,0,3),
and notice that 17 = 8 + 9, so it satisfies the definition.

Definition 6. The PPQ (d,a,b,c) is called an ordinary PPQ if it is not a twin
PPQ, trivial PPQ, or a child of a trivial PPQ. Equivalently, the PPQ (d, a,b,¢) is
called an ordinary PPQ if it satisfies each of d # a + ¢, a # b, and b # 0.

In the next section, we will present a proof that our infinite tree of PPQs is
complete. Then, we will describe the construction of our infinite PPQ tree as well
as display a picture of the first few layers of the tree.

5. Constructing Our PPQ Tree

This section will begin by presenting our proof that our infinite PPQ tree is complete
by mimicking the steps we took to prove that Hall’s tree was complete.

Definition 7. Given any z,y,z € {—1,1} with x+y+2 > —1, an arbitrary element
Q. of Q is denoted

2 z y =z 2 -1 -1 -1

11 0y =z 4 _ |-z 0 =z =
Q. = Lz 0 2| and thus Q" = g oy 0 Y
1 =z y O -z 0z z 0

Given any natural number i, for convenience we will often denote the PPQ
(di, ai, b;, ¢;) as the vector g;.

Lemma 4. Given any PPQ (d1,a1,b1,c¢1), if a1 # 0, there exists a QQ € Q such
that Q= - q, = qy, where q, is a PPQ and dy < d;.

Proof. Let Q! act on an arbitrary PPQ (dy, a1, b1, c1) with a; # 0:

2 -1 -1 -1 d1 2d1 —a —bl — C1 d2
—z 0 r x| |a| _ z(—di+bi1+c1) | |a
-y oy 0 y b1 y(—di + a1+ c1) ba |
-z oz z 0 c1 z(—dy + a1 + by) Cs
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Note that 22 = y? = 22 = 1. Using the fact that d? = a? + b? + 3, it follows that

ds = (2d1 — a1 — by — 1)?
= 4d} + a 4+ b5 + ] + 2a1b1 4 2a1¢1 + 2bicr — dardy — 4bydy — derds
= (3d] 4+ d7) + af + b} + ¢§ + 2a1b1 + 2a1¢1 + 2bicy — dardy — 4bidy — 4erdy
= (3d? +a? + b3 +cD) 4+ aF + b2 + ¢ + 2a1by + 2a1¢1 + 2brcr — dardy — 4bydy — 4eydy
= 3d} + 243 + 2b% + 2¢} + 2a1b1 + 2a1¢1 + 2brer — dards — 4bidi — derds
= (d} + b} 4 ¢ + 2brc1 — 2b1dy — 2¢1d,)
+(di 4+ af + i + 2a1¢1 — 2a1d1 — 2¢1dy)
+ (d3 + ai + b7 + 2a1b1 — 2a1dy — 2b1dy)
= (2(—d1 + b1 +c1))* + (y(—d1 + a1 + c1))* + (2(=d1 + a1 + b1))?
= a3+ b3 +c5.
Thus (dg, as, bs, ¢2) is a Pythagorean quadruple. Showing (ds, ag, be, ¢2) is primitive

is similar to the PPT case and is left to the curious reader.
Now, suppose dy > di. Then

2di —a1—b—a>di=di>a+b+c
= di > ad + b+ cF 4 2a1by + 2a1¢1 + 2b1cy
= d; > d; + 2a1b1 + 2a1¢1 + 2bicy
= 0> 2a1b1 + 2a1¢1 + 2b1cq.

This is a contradiction, since aq, by, and ¢; are all positive. Thus, do < d;. O

Next, just as in our discussion on the structure of the tree of PPTs, we want to
show that there is a unique “terminating PPQ” in our PPQ tree. It will then follow
that all PPQs in the tree are descendants of that PPQ, and hence it is a root.

Definition 8. A terminating PPQ is any PPQ (6, o, 8,~) with the property that
for all Q € Q, the action of Q= on (4, a, 3,7) either leaves (§,a, 3,7) unchanged
or yields a PPQ equivalence class representative that contains at least one negative
integer.

For instance, (1,0,0,1) is a terminating PPQ. This fact can be verified quickly
and is left to the reader.

Similar to the PPT case, the contrapositive of the above lemma implies that
(1,0,0,1) is the only terminating PPQ.

Corollary 2. Given a PPQ (di,a1,b1,c1), if, for every Q € Q,Q7' - q, = qs,
either di = do or q4 is not a PPQ, then a; = 0. It then follows that (1,0,0,1) is
the only terminating PPQ).
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The above corollary is true because of our earlier definition that the PPQ equiva-
lence class representatives with at least one zero entry are of the form (d, a, 0, ¢)—so
if a = 0, the PPQ is of the form (d, 0,0, ¢), and must therefore be (1,0,0,1).

Lemma 5. Given an arbitrary PPQ (dy,a1,b1,¢1), for all Q € Q, Q - q, = g4
where (da, az,ba, c2) is a PPQ.

Proof. By Lemma 3.1, we know that:
Q' q=¢=0-Q' =0 ¢=>0L¢=0Q-¢=>q¢=0Q q

Therefore, multiplying an arbitrary PPQ by any element of Q always results in a
PPQ. O

Lemma 6. The matriz Q@ from Lemma 5.1 is unique.

Proof. Given an arbitrary PPQ (di,a1,b1,¢1) # (1,0,0, 1), consider

dl 2 -1 -1 -1 d1 2d1 — a —b1 — C1 dz

o1 a| _ |-z 0 =z ar| _ x(—=dy + b1 + 1) _ a2
* b1 -y oy 0 yl||h y(=di +ay +c1) ba |

¢ -z z z 0 c1 z(—dv + a1+ b1) Co

For any real number n, we define

0 ifn=0
sgn(n) = £ ifn#0

In|

Observe that each of ds, as, b2, and ¢y are nonnegative if and only if the following
four statements hold:

0<2dy —ay —by —c1; x=sgn(—di +b+c1);
y=sgn(—dy + a1 +c¢1); z=sgn(—di +aj +by).
This implies that there is a unique ordered triple (z,y, z) such that (ds, as,bs, c2)

contains only nonnegative integers. Thus, the matrix ¢ from Lemma 5.1 is unique.
O

Lemma 7. If (d,a,b,c) is a PPT and (d,a,b,c) # (1,0,0,1), then there exists a
unique sequence of matrices Ty, Ts, ..., T, with each T; € Q such that

b Tyt Tt

n

o o9
_ o o -
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Proof. By Lemma 5.3 given any PPQ (dy,a1,b1,c1), there exists a unique T € Q
such that Tl_l' (d1,a1,b1,¢1) = (da,ag,ba,c2) , where (da, ag, ba, c2) is a PPQ and
0 <dy <dy. If (da,ag,bs,c2) = (1,0,0,1), then we are done.

If not, there exists a unique T € Q such that T, *- (dg, ag, ba, c2) = (d3, as, bz, c3),
where (d3,d3,b3,63) isaPPQand 0 <d3 <dy <dy. If (d3,a3,b3,03) = (1,0,0, 1),
then we are done.

Continuing in this manner, since the values of d; form a strictly decreasing se-
quence of positive integers, this process must eventually end at a minimal value
for d,,, namely d, = 1, since (1,0,0,1) is the only terminating PPQ. Therefore,
there exists an n € N such that T, ' (dn, an,bn,cn) = (dni1, Gng1s bt Cnrl) =
(1,0,0,1). O

By the above, a complete tree of nonnegative PPQ equivalence class represen-
tative exists, but it is still unclear as to what this tree would look like. For the
remainder of this section, we will present our construction of a complete PPQ tree.

Recall that a perfect ternary tree of all PPTs is generated by the elements of H
applied to (1,0, 1). Said differently, every nontrivial PPT can be multiplied by all
three matrices in H. However, this is not the case with PPQs; there are restrictions
on which PPQs can be multiplied by a given element of Q. These restrictions will
depend on the type of PPQ, as shown in the following examples.

Example 5.1. Given the PPQ (11,2,6,9), note that

11 9
2 —4
Q| gl =17
9 7

That is, Q34 - (11,2,6,9) is not a nonnegative PPQ representative, so in order to
include only nonnegative PPQ representatives in our PPQ tree we cannot multiply
(11,2,6,9) by all @ € Q.

Example 5.2. Consider the children of the PPQ (9,4,4,7) generated by Q2 and
Qs:

9 25 9 25

4 20 4 12
Q2 4 12’Q3’ 4 201"

7 9 7 9

Note that Q2-(9,4,4,7) and Qs -(9,4,4,7) belong to the same PPQ equivalence
class, so in order to preserve uniqueness of vertices in our PPQ tree, (9,4,4,7)
cannot be multiplied by both Q2 and Q3. A similar thing happens for all twin
PPQs.
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We are now in a position to establish the “rules” that guarantee our PPQ tree
will contain each nonnegative equivalence class representative exactly once. Let
{Moy, M2, M5, My, Mas, Moy, M34} be a family of sets of matrices defined as follows:

o Mo = Q\ {Q23,Q24,Q34} = {Qo, Q2, @3, Qu},
o My = Q\ {Qa3,Q21} = {Qo, Q2, @3, Qu, Q34},
o M3 = Q\{Qa3,Q31} = {Qo, Q2, @3, Qu, Qaa},
o My = Q\ {Q24,Q34} = {Qo, Q2, @3, Qa, Q23},
o Mz = Q\ {Q23} = {Qo, Q2, @3, Q1, Q24, @34},
o My = Q\{Q2} = {Qo, Q2, @3, Qs, Q23, @34},
o M3y = Q\{Q31} = {Qo, Q2, @3, Qs, Q23, Q24}-

Let ¢ = (d,a,b,c) denote a nonnegative PPQ equivalence class representative
distinct from (1,0,0,1). The rules for generating the children of g in our tree are
as follows.

e If g is an ordinary PPQ generated by the matrix @Q;; € Q, multiply g by each
element in M;;.

o If g is a twin PPQ generated by the matrix @;; € Q, multiply g by each
element in Mij \ {Q3, Q34}.

o If q is a trivial PPQ generated by the matrix @;; € Q, multiply q by each
element in M;; \ {Q3, Q23, Q24, @34}

e If g is a child of a trivial PPQ generated by the matrix Q;; € Q, multiply q
by each element in M;; U {Qa4}.

Theorem 4. A complete PPQ tree, containing each PPQ equivalence class exactly
once, is generated by the rules above, and each representative in the tree is nonneg-
ative.

Our complete tree of all PPQ equivalence classes appears in Figure 3.
In what follows, we will verify five variations of the construction rules listed above;
the remaining proofs use similar techniques and are left to the curious reader.

Proof (Qas - Qa3 Fxception). Let ¢ = (d,a,b,c) denote an arbitrary ordinary PPQ
generated by (Q23. Note that

d 3 -2 -2 0 d 3d —2a — 2b
a 2 -1 -2 0 a 2d —a —2b

Qo Qas- 14| =19 9 _1 o bl | 2d—2a—1b
c 0 O 0 -1 c —c
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I (1,0,0,1)

(97 4’ 47 7) (57 4’07 3)
Edge Key: Red=Qo, Gray=0Q)2, Pink=Q3, Cyan=0),, Blue=Qa23, Green=Q34

Vertex Key: Squares denote twin PPQs with a = b, such as (9,4,4,7). Triangles denote trivial
PPQs with b = 0, like (5,4,0,3). The root, (1,0,0,1), is the only PPQ that is both a twin PPQ
and a trivial PPQ.

Figure 3: A Complete PPQ Tree

It follows that —c < 0, and so Q23 - @23 - q is an equivalence class representative
that contains a negative entry. Hence, in order for g to be a PPQ, Q23 Q23 -q must
contain a negative entry and cannot be included in our tree. Therefore, if a PPQ
was generated by a3, then the resulting PPQ will not be multiplied by Q23. O

Proof (Q4 - Q34 Fxception). Consider an arbitrary ordinary PPQ g = (d,a,b,c).
Note that

d 3 0o -2 =2 d 3d —2b— 2c

-1 —1 al 0 -1 0 0 a —a
Qa4+ Qs bl -2 0 1 2 b 2d +b+2b
c 2 0o -2 -1 c 2d —2b —c

It follows that —a < 0, and so Q3_41 -QZl -q is an equivalence class representative
that contains a negative entry. Hence, in order for g to be a PPQ, Q;ll 'Qll -q must
contain a negative entry and cannot be included in our tree. Therefore, if a PPQ
was generated by (4, then the resulting PPQ will not be multiplied by Q34. O

Proof (Twin PPQ Exception). Let (d,a,a,c) be a twin PPQ, and let W be a func-
tion that satisfies

2z y =z d 2d+a(z+y)+cz
11 0 vy =z a d+ay+cz
Wiz,y,2) = 1 =z 0 =z a d+ax +cz
1 =z y O c d+a(z+y)

for any z,y,z € {—1,1}.
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Note that for any value of z, W(—1,1,z) and W(1,—1, z) represent the same
PPQ equivalence class, as they have the same entries (e.g.: (25,20,12,9) and
(25,12,20,9)). Thus, W(-1,1,z) ~ W(1,—1, z). Hence, multiplying a twin PPQ
by Q2 is equivalent to multiplying by @3, and multiplying by Q24 is equivalent to
multiplying by Q34. Consequently, we ignore the children of twin PPQs generated
by Q3 and @34, because these children are already generated by Q2 and Q23 and
we only want each equivalence class representative in our tree once. O

Proof (Trivial PPQ Exzception). Let (d,a,0,c) be a trivial PPQ, and let R be a
function that satisfies

2 x Yy z d 2d 4+ ax + cz
|1 0y =z al d+cz
R(z,y,2) = 1 z 0 =z 0 d+ar+cz |’
1 =z y O c d+ ax

for any z,y,z € {—1,1}

Note that, for all  and 2z, R(z,—1,2) ~ R(z, 1, 2), since there are no y’s in the
output of R. So for a trivial PPQ, multiplying by Qg is equivalent to multiplying
by Qs, multiplying by Q2 is equivalent to multiplying by @23, and multiplying by
Q4 is equivalent to multiplying by @s34. Consequently, we ignore the children of
trivial PPQs generated by @3, Q23, and @Q34; doing so forces each equivalence class
representative to appear exactly once in our tree. We also never multiply a trivial
PPQ by Q24 because all trivial PPQs are generated by @24, and we do not want to
multiply its parent by Qa4 - Q24. O

Proof (Child of a Trivial PPQ) Exception). Let (d,a,b,c) be a PPQ, and define
(d2,ag,ba, o) as follows

d 3d + 2ax + 2cz do
a| |2d4+ax+2cz| _ |a2
Q24 : Q* . b _yb b2
c 2d + 2ax + ¢z Co

Note that Q. # Q24 because (see rules.)

Assume y = 1 and b > 0. Then g, contains a negative entry and therefore cannot
be a nonnegative PPQ equivalence class representative.

Assume y = —1 and b > 0. Then Q. € {Q3,Q23,Q34}, and for any Q €
{Q3,Q23, @34}, one can multiply by @ then by Q24 because (see rules.) So g, is a
nonnegative PPQ equivalence class representative.

Assume b = 0. Then by = 0 and the value of g, does not depend on y, so y could
be either —1 or 1. So

Q21 Q3 q=Q214-Qo-q; Q24-Q23-q=0Q24-Q2-q; Q214-Q31-q=CQ214-Qa-q.
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In addition, for any Q € {Qs, Q23, @34}, one can multiply by @ then by Q24 because
(see rules.) So for all Q° # Qa4, g = Q24 - Q° - q is a nonnegative PPQ equivalence
class representative.

So, if q is not trivial, the multiplication of its children is described by the rules.
Otherwise, if g is trivial, then its children can be multiplied by Q24 as well and
remain in the tree of nonnegative PPQ equivalence class representatives. O

We will now briefly define and prove two interesting results concerning the gen-
eration of trivial and twin PPQs in our tree.

Theorem 5. Any nonterminating trivial PPQ) is generated by Qay.

Proof. Let (d,a,0,c) be a nonterminating PPQ. Then there exists a unique parent
of (d,a,0,c) in our tree, namely the PPQ

d 2d —a —c do
a z(—d+c) as
@ 0 |y(=d4+a+c)| |be
c z(—d+a) Co

Since g, is a PPQ, all of its entries are nonnegative. So z(—d + ¢) > 0 and
z(—d +a) > 0. Tt follows that

2(—d+¢)>0=—-der+cx>0=>der<cxr=xz=-1,

since d > ¢. A similar process with z(—d + a) > 0 implies that z = —1. Since there
is no matrix in @ with x,y,z = —1, it must follow that y = 1. Thus, in order for
g, to be a PPQ), it must be true that Q. = Qa4. O

Theorem 6. Any nonterminating twin PPQ is a child of another twin PPQ.

Proof. Consider an arbitrary twin PPQ. Then there exists a unique parent of
(d, a,a,c) namely the PPQ

2 -1 -1 -—-1]| |d 2d—a—a—c do
-z 0 =z x| |a z(—d+a+c)| a2
-y oy 0 gyl la y(—d+a+c)|  |b
-z z z 0 c z(—d + 2a) Co

Since g, is a PPQ), its entries must be nonnegative. Note that when y = z, it follows
that as = bs, and so, by definition, g, is a twin PPQ.

Suppose y # z, and, without loss of generality, let x = 1 and y = —1. Since
the entries of g, must be nonnegative, x(—d+a +¢) > 0 and y(—d +a+¢) > 0.
These imply that d > a+cand d < a+c. Sod = a+c. Butif d=a+ cthen
ag = 2(—d+ a+ ¢) = 0, and similarly, b = 0. So g5 = (1,0,0,1). As a result,
(dQ, as, bQ, CQ) is a twin PPQ
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By contraposition of the above, if g, # (1,0,0, 1), then y = 2. So by the above,
a2 = by, and thus g, is a twin PPQ. Therefore, any nonterminating twin PPQ is
always a child of another twin PPQ. O

Now we will briefly touch on the use of Carmichael’s formula for the PPQ equiv-
alence class representatives in our tree.

Given an arbitrary PPQ equivalence class representative g = (d, a, b, ¢), let C'(q)
be the set of all integral 4-tuples (m,n,p,q) such that (d,a,b,c) = (m? + n? +
? — ¢?). This comes from Carmichael’s
formula in Theorem 1.2, but includes all integral (m,n,p,q), even the 4-tuples
with negative entries. We have noticed that some representatives q in a given
equivalence class have the corresponding set C'(q) that contains no 4-tuples that
are strictly nonnegative, such as (25,12,16,15). However, the set C' of another
representative in the equivalence class of (25,12,16,15) does have a 4-tuple with
strictly nonnegative entries, namely (25,16,12,15). But the latter does not appear
in our construction of the tree—so, if we wanted to use Carmichael’s formula to
generate all of the PPQ equivalence class representatives in our tree, we would need
to include negative entries in some of the generating 4-tuples (m,n,p, q).

p2 + q2, 2mq + 2np, 2nq — 2mp, m2 4+ n? — p

One way we can see this is in the following theorem. But first, let us intro-
duce some notation—given an integral 4-tuple (m,n,p, ¢), we will say that a corre-
sponding PPQ equivalence class representative (d,a,b,c) is Carmichael-generated
by (m,n,p,q) if

m? +n® 4+ p* + ¢° d
2mq + 2np a
2nq — 2mp ~ b
m? 4+ n?—p? — ¢ c
And if (d,a,b,c) is Carmichael-generated by (m,n,p, q), we will denote that
(m,n,p,q) = (d,a,b,c).

Theorem 7. If (d,a,b,c) is a PPQ equivalence class representative Carmichael-
generated by (m,n,p,q), then (d,b,a,c) is Carmichael-generated by (n,m,—p,q)
and (—m,n,q,p).

Proof. Let (d,a,b,c) be a PPQ equivalence class representative Carmichael-generated
by (m,n,p,q). Then

d m? +n? + p? + ¢ m? +n? + p? + ¢? d
al|l B 2mq + 2np 2nq — 2mp b
bl {m,n.p, q) = 2nq — 2mp 2mgq + 2np a
c m2 4+n2 —p? — ¢ m2 +n2 — p? — g2 c
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Note that

] m2 + n2 + p2 + ¢2] 02 +m? + (—p)® + ¢°]

bl 2ng — 2mp _ 2ng + 2m(—p) _

al 2mgq + 2np o 2mq — 2n(—p) = (n.m, —p, ),
] m? 4 n2 - p?— g 2+ m? - (—p)? — ¢

and

] (m2 + n2 + p2 + ¢2] [(—m)2 + 12 + ¢ + p?]

bl 2nq — 2mp _ 2(—m)p + 2ngq _

al 2mgq + 2np o 2np — 2(—m)q = (=m.n.q,p).
] m? 4 n? —p?— g (—m)? +n2 — ¢* — p?)

O

Going back to our earlier example of (25, 16,12, 15), we see that (25,16, 12,15) =
(2,4,1,2). By the above theorem, that means that the other PPQ equivalence class
representative (25,12,16,15) = (4,2, —1,2) = (—2,4,2,1).

6. Interesting PPQ Subtrees

The PPQ tree constructed in the last section contains several interesting subtrees.
In what follows, for brevity we will omit the root (1,0,0,1). The first subtree of
note consists of all trivial PPQs, since every trivial PPQ has exactly three grand-
children that are trivial PPQs, and every trivial PPQ is the grandchild of another
trivial PPQ. More precisely, given a trivial PPQ (d,a,0,¢), its three trivial PPQ
grandchildren are given by the following:

d 3 2 0 2 d 3d + 2a + 2¢
al (2 1 0 2 al | 2d+a+2c
@a-Qo- ol =19 o —1 o] o 0 ’
c 2 2 0 1 c 2d + 2a + ¢
[d] (3 —2 0 2] [d] [3d — 2a + 2¢]
al |12 -1 0 2 al | 2d—a+2c
Qa1 = 1o o _1 of |o| = 0 '
] 2 =2 0 1 |c] | 2d —2a +c |
and - ~ o _ _
d 32 0 =2 d 3d +2a — 2¢
al |12 1 0 -2 al | 2d+a—2c
@a-Qu- ol =19 o -1 o |o|~ 0 '
L] _2 2 0 —1_ L] _2d—|—2a—c_
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(57 47 07 3)
v o
(17,8,0,15) (29,20,0,21) (13,12,0,5)
// \ P 2 N T
(37,12,0,35) (97,72,0,65) (65,56,0,33) (85,36,0,77)(169, 120,0,119)(39,80,0,39)  (53,28,0,45) (73,48,0,55) (25,24,0,7)

I AN S IR I T

Key: Red: Q24Q4, Blue: Q24Qq, Green: (Jo,0)5

Figure 4: The subtree of all trivial PPQs

which are identical to the children of a PPT (d, a, ¢) generated by the set of matrices
‘H = {Hy, Ho, H3}, but as quadruples with a zero entry inserted.

The subtree of all nonterminating trivial PPQs appears in Figure 4.

Another interesting subtree contains all nonterminating children of trivial PPQs—
that is, all PPQs of the form (d,a,b,c) where d = a + ¢. Note that this perfect
ternary tree appears “between” the trivial subtree.

<37 ’ 27 1)
(1172’679> N (1 8 12 9) (9, 87 17 1)

P
(27,2,10,25) (57,32,40,25) (41,32,24,9) (57,8, (99, 50,70,49) (59,50,30,9)  (33,8,20,25) (43,18, 30,25) (19,18,6,1)

TR R TR IR LY ORI R

Key: Orange: QQ4Q24, Cyan: QoQ24, Olive: Q2024
Figure 5: The subtree of all children of trivial PPQs

In what follows, the coloring of edges will be identical to the complete PPQ tree
that appears in Figure 3.

The subtree containing all twin PPQs, on the other hand, is not a perfect tree,
but it does have a beautiful structure. The first few rows can be seen below in
Figure 6.

(3,2,2,1)
(11,6,6,7) (9,4,4,7)
(41,24, 24,23) (27,10, 10,23) (33,20,20,17) (17,12,12,1)  (19,6,6,17)

o /e AN AN ING

Key: Red: Qq, Blue: Qa3, Cyan: ()4

Figure 6: The subtree of all twin PPQs

It should be noted that the perfect binary subtree of all twin PPQs generated by
{Qo,Q4} does not contain all twin PPQs, so we need to consider the matrix Q23
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as well. It was shown previously that twin PPQs are only children of another twin
PPQ, and it can be shown that they are only generated by one of {Qq, Q4, @23}

More precisely, the subtree containing all twin PPQs is constructed as follows:
let ¢ = (d, a,a,c) denote a nonterminating twin PPQ. Then:

e if g is generated by Qo or @23, multiply g by each element in {Qq, Q4};
e if g is generated by Q4, multiply g by each element in {Qg, Q4, Q23}.

One interesting feature of the subtree of all such twin PPQs is that the number
of PPQs in the n" level of the subtree is given by P,, the n** Pell number. Pell
numbers are defined recursively by P,y1 = 2P, + P,_1, with Py =0, P, = 1. This
connection is due to the following facts.

1. In any given row, each PPQ is multiplied by both Q¢ and Q4.
2. For each PPQ generated by (4, one also multiplies by Q23.

3. The number of PPQs generated by Q4 in a given row is identical, via (1), to
the number of PPQs in the previous row.

In a similar manner, the n'* row of the subtree of twin PPQs generated by just
{Q4,Qa3} contains F), twin PPQs, where F,, denotes the n** Fibonacci number.

Two other interesting subtrees of PPQs are those generated by {Qo, Q2, @4} and
{Qo,Q3,Q4}. Each is a perfect ternary tree and contains the same PPQ equivalence
classes, but they contain different sets of nonnegative equivalence class representa-
tives. These trees can be seen in Figures 7 and 8.

(3,2,2,1)
/ * \\\\\
(11,6,6,7) (7,6,2,3) 7 (9,4,4,7)
(41,24, 24,23)(29,24,12,11)(27,10,10,23) (25,12,16,15) (13,12,4,3) (19,6, 10, (33,20,20,17) (25,20,12,9) (19,6,6,17)

A NG/ N NI TN AN

Key: Red: Qq, Gray: o, Cyan: Q4
Figure 7: The subtree generated by {Qo, Q2, Q4}

Notice that, for an arbitrary PPQ (d,a,b,c) in Figure 6, the PPQ in the same
“place” in Figure 7 has entries (d,b,a,c). Also notice that the tree generated by
{Qo,Q3,Q4} is not actually a subtree of our PPQ tree, since, for example, we do
not multiply (3,2,2,1) by Q3.

Another intriguing subset of the PPQ tree consists of all twin PPQs of the form
(d,a,a,1). These particular 4-tuples are solutions to d? —2a? = 1, a specific version
of Pell’s equation (not to be confused with the Pell numbers). Consequently, these 4-
tuples have the property that the corresponding ratios g are rational approximations
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(3221
i
(11,6,6,7)/(7 2,6,3) I (9,4,4,7)
— < PR TN PARN

(41,24,24,23)(29,12,24,11) (27,10, 10,23) (25,16,12,15) (13,4,12,3) (19,10,6,15) (33,20,20,17) (25,12,20,9) (19,6,6,17)

A NI N7 T NN

Key: Red: Qq, Pink: @3, Cyan: Q4

Figure 8: The tree generated by {Qo, @3, Q4}

0 V2, and, in fact, these are the very approximations generated by the simple
continued fraction algorithm. It is easy to show that all such 4-tuples are generated
by powers of Qa3 - Q4, applied to (3,2,2,1). So, this “subtree” is simply a subset
of the vertices belonging to one branch of infinite length inside of the PPQ tree.

Open Problem 1. We encourage the curious reader to look for other interesting
subtrees in our complete PPQ tree. We also encourage brave readers to attempt
to build a complete tree of all solutions to the quintary version of the Pythagorean
Theorem, namely h? = a? + b? 4 ¢ + d?. Be aware that there are 2° - 5! = 3840
variations of an order 5 matrix from which to choose that generate all primitive
Pythagorean quintuples, so this problem may require a great deal of patience and
stamina.

Open Problem 2. Construct an algorithm that determines the location of a
specific PPQ in our tree.
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