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Abstract

Let N be an odd perfect number. Let ω(N) be the number of distinct prime factors

of N and let Ω(N) be the total number of prime factors of N . We prove that if

(3, N) = 1, then 302
113ω(N)− 286

113 ≤ Ω(N). If 3 | N , then 66
25ω(N)−5 ≤ Ω(N). This is

an improvement on similar prior results by the author which was an improvement

of a result of Ochem and Rao. We also establish new lower bounds on ω(N) in

terms of the smallest prime factor of N and establish new lower bounds on N in

terms of its smallest prime factor.

1. Introduction

Recall that a positive integer N is said to be perfect if the sum of N ’s proper divisors

add up to n, or equivalently, that σ(N) = 2N , where σ(N) is the sum of the divisors

of N .

It is currently unknown whether there are any odd perfect numbers. Let N be

an odd perfect number. Ochem and Rao [16] have proved that N must satisfy

Ω(N) ≥ 18ω(N)− 31

7
(1)

and

Ω(N) ≥ 2ω(n) + 51. (2)

Here Ω(N) is the total number of prime divisors of N , and ω(N) is the number

of distinct prime divisors of N . Note that Ochem and Rao’s second inequality is

stronger than the first as long as ω(N) ≤ 81. Nielsen [13] has shown that ω(n) ≥ 10.

In a previous paper [23], the author improved on Ochem and Rao’s result. In that

paper the following theorem was proved.

1This paper was primarily written while the author was a lecturer at Iowa State University.
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Theorem 1. If N is an odd perfect number with 3 6 |N , then

Ω(N) ≥ 8

3
ω(N)− 7

3
. (3)

If N is an odd perfect number with 3|N , then

Ω(N) ≥ 21

8
ω(N)− 39

8
. (4)

.

In this paper we prove improve on that result as follows.

Theorem 2. If 3 - N , then

Ω(N) ≥ 302

113
ω(N)− 286

113
. (5)

If 3 | N , then

Ω(N) ≥ 66

25
ω(N)− 5. (6)

Note that while Inequality (6) is always better than Inequality (4), Inequality

(5) is only better than Inequality (3) when ω ≥ 34. Note that the worst case of the

above is when 3 | N , and so we have the following corollary.

Corollary 1. If N is an odd perfect number then

Ω(N) ≥ 66

25
ω(N)− 5.

Note that Kevin Hare [9] has shown that in general any odd perfect number must

satisfy Ω(N) ≥ 75, while [15] has improved this to Ω(N) ≥ 101.

This paper contains eight sections. The first section is the introduction. The

second section contains various results we will need to prove Theorem 2. The third

section contains the proof of Theorem 2 when 3 | N . The fourth section contains

the proof when (3, N) = 1. The fifth section improves on the known lower bound

of ω(N) in terms of the smallest prime factor of N . This is essentially a small

improvement of existing results although new questions are raised based on some

aspects of the methods used. The sixth section combines the ideas of the previous

sections to improve lower bounds for N in terms of its smallest prime factor. The

seventh section discusses a new way of measuring the strength of a statement about

odd perfect numbers and evaluates the Ochem and Rao type bounds in that con-

text. The eighth section discusses various related open problems that are naturally

connected to improving these results. We will use the following notation: N will

be an odd perfect number. We will write Ω for Ω(N) and write ω for ω(N). We
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recall Euler’s classical theorem on odd perfect numbers. Euler proved that N must

have the form N = qem2 where q is a prime such that q ≡ e ≡ 1 (mod 4) and

(q,m) = 1. Traditionally, q is called the special prime.2 Note that from Euler’s

result one immediately has Ω ≥ 2ω − 1. Essentially all improvements on Ochem-

Rao type inequalities can be thought of as improving on the bound from Euler’s

theorem. For the remainder of this paper we will assume that N is an odd perfect

number with q, e and m given as above. The basic method of this paper is the

same as that used in Ochem and Rao’s result. The essential observation is that if

N is an odd perfect number with a prime p raised to just the second power, then

for each such prime p we have (p2 + p+ 1)|n. It follows from quadratic reciprocity

that if q is a prime and q|(p2 +p+ 1), then q is either equal to 3 or is 1 mod 3. Now

assume that N has many such primes p. If p2 + p + 1 is often divisible by 3, then

N will be divisible by a large power of 3. If q is not 3 in some instance, then with

the exception of q being the special prime, one has one of two situations: Either

one has q2||N , which gives a new 3 in the factorization since q ≡ 1 (mod 3), and so

3|(q2 + q+ 1), or one at least has q4|N . The key is that if one has many numbers of

the form p2 + p+ 1 then there is not much room for a lot of primes to be repeated

exactly twice. And if one has most primes raised to a higher power then one gets

repeated prime factors from those primes. This idea is made rigorous through a

system of linear inequalities. Finding the optimum of the resulting linear program

gives the desired inequality.

While this paper is substantially longer than the previous paper by this author

and Ochem and Rao’s paper, the basic method remains the same. The improve-

ments in the case when 3 | N are essentially straightforward and represent a small

improvement of the technique using some new minor number theoretic results to get

additional inequalities in the system used. The case when (3, N) = 1 involves three

major new ingredients. Our first new ingredient is the notion of a triple threat.

Define a triple threat to be a quadruple of four odd primes x, a, b, and c such that

σ(x2) = x2 + x+ 1 = σ(a2)(σ(b2)σ(c2) = (a2 + a+ 1)(b2 + b+ 1)(c2 + c+ 1)

and where a2 + a + 1, b2 + b + 1, and c2 + c + 1 are all prime. The primary

obstruction to improving the 8
3 bound in Theorem 1 arose from the fact that we

could not rule out the existence of odd perfect numbers with many prime divisors

forming triple threats. Consider a triple threat (x, a, b, c) where x ≡ a ≡ 1 (mod

5). One of our results in this paper is that no such triple threats exist with this

property. This restriction of triple threats is not by itself sufficient to improve the

bound. Our second new ingredient is that if p4||N , then every prime divisor of σ(p4)

is either equal to 5 or is congruent to 1 modulo 5. Our third new ingredient is the

2Some authors call q the “Euler prime.” A better name in fact would be the Cartesian prime,
since prior to Euler’s result Descartes proved that an odd perfect number needed to have exactly
one prime factor raised to an odd power. In any event, the term special prime avoids any issues
of priority.
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observation that we have the following surprising factorization:3 If f(x) = x2+x+1,

and g(x) = x4 + x3 + x2 + x+ 1, then

f(g(x)) = (x2 − x+ 1)(x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3).

This means that if we have a prime m such that m4||N , and σ(m4) = p is itself

prime, then we can substantially restrict what σ(p2) looks like. We can combine the

second and third ingredients to guarantee that one of the following holds: (a) there

are many primes p where p2||N and p ≡ 1 (mod 5); (b)N is divisible by a large power

of 5; (c) N has many prime factors raised to at least the sixth power; (d) N has many

prime factors of a very special form arising from the third ingredient factorization.

Note that all three of these ingredients are necessary for our improvement. Any two

of them will not by themselves give rise to an improvement beyond the 8
3 bound.

2. Foundations

This section contains various lemmata we will need for the main results. We will

assume some familiarity with the literature on perfect numbers but will recall some

basic facts here. For some early history on this matter see [5].

While the ancient Greeks originally defined perfect numbers in terms of the sum

of the proper divisors, it is more natural for most purposes to define a number n

as perfect if n satisfies σ(n) = 2n where σ(n) is the sum of all the positive divisors

of n. Much of the study of perfect numbers relies on the nice fact that σ(n) is a

multiplicative function. Recall that a number n is said to be abundant if σ(n) > 2n,

and it is is said to be deficient if σ(2n) < n. We will set h(n) = σ(n)
n . Note that h(n)

has three names in the literature. Authors have referred to h(n) as the abundancy

of n, the index of n, or the abundancy index of n. We have that

h(n) =

∑
d|n d

n
=
∑
d|n

d

n
=
∑
d|n

1

d
. (7)

From Equation (7) we have that if a > 1, then we have h(an) > h(n). In particular,

any multiple of an abundant number is itself abundant, and thus no perfect number

can be divisible by an abundant number or be divisible by a smaller perfect number.

One can use this, along with Euler’s description of an odd perfect number to prove

many results; for example it is an easy exercise to use these two facts to prove that

no odd perfect number is divisible by 105.

Set

H(n) =
∏
p|n

p

p− 1
.

3This observation seems to have been first noted explicitly in the literature in [4].
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It is not hard to show that h(n) ≤ H(n) with equality if and only if n = 1. Also,

lim
k→∞

h(nk) = H(n).

Thus, understanding h(n) is closely connected to understanding H(n).

Much of the work on odd perfect numbers relies on the fundamental observation

that we can bootstrap from knowing that a specific prime power divides N to get

that other prime powers divide N . For example, if 32||N , then since σ(32) = 13 we

may conclude that 13 must also divide N . In general, if pk||N then we must have

σ(pk)|(2N). Note that if p is prime then

σ(pk) = 1 + p+ p2 · · ·+ pk =
pk+1 − 1

p− 1
.

In general, for any k we have

1 + x+ x2...+ xk =
xk+1 − 1

x− 1

and we may factor xk+1−1
x−1 into a product of cyclotomic polynomials. Thus, a

major part of understanding odd perfect numbers comes from understanding the

integer values of cyclotomic polynomials. In the context of this paper, much of our

work comes from developing a more detailed understanding of the behavior of the

cyclotomic polynomials x2 + x+ 1 and x4 + x3 + x2 + x+ 1.

Lemma 1. Let a and b be distinct odd primes and let p be a prime such that

p|(a2 +a+1) and p|(b2 + b+1). If a ≡ b ≡ 2 (mod 3), then p ≤ a+b+1
5 . If a ≡ b ≡ 1

(mod 3) then p ≤ a+b+1
3 .

This is Lemma 1 from [23]. We will also need the following result, which is Lemma

3 in [16]:

Lemma 2. Let p, q and r be positive integers. If p2 +p+1 = r and q2 +q+1 = 3r,

then p is not an odd prime.

Lemma 3. If x is a positive integer then the only possible common prime divisor

of x2 − x+ 1 and x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3 is 31.

Proof. Set A = x2−x+ 1 and B = x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3. If p|(A,B)

then p divides any linear combination of A and B. In particular, p must divide

(5x5 + 21x4 + 44x3 + 58x2 + 55x+ 34)A− (5x+ 1)B = 31.

So p = 31.

We will also need the following Lemma
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Lemma 4. The only non-negative integer solutions to the equation

x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3 = a2 + a+ 1

are (x, a) = (0, 1) and (x, a) = (1, 5).

Proof. We can verify by direct computation that these two solutions are the only

solutions where 0 ≤ 26 ≤ x, so we may assume that x ≥ 27. Some algebra shows

that we may write a in terms of x as

a = x3 +
3

2
x2 +

11

8
x+

7

16
+ t (8)

where

t =
A

B
,

where

A = 588x2 + 876x+ 351

and

B = 256x3+384x2+352x+240+128
√

4x6 + 12x5 + 20x4 + 24x3 + 28x2 + 24x+ 9.

For any integer x, x3 + 3
2x

2 + 11
8 x is a rational number whose denominator divides

8, and the next term in Equation (8) is 7
16 , so the only way that a can be an integer

is if t is a fraction whose denominator is 16. However, we have that

0 < t <
876x2

256x3 + 384x2
=

219

128x+ 96
<

1

16
.

Here the last inequality on the right is due to x ≥ 27. Since t is strictly between

0 and 1/16 it cannot be a fraction with denominator 16, and so there are no more

solutions.

The next lemma then follows almost immediately.

Lemma 5. The only positive integer solution to

x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3 = a2 − a+ 1

is (x, a) = (1, 6).

Proof. This follows from Lemma 4 and noting that this equation is identical to the

equation from that lemma but with a− 1 substituted for a.

Lemma 6. Let x be a prime with σ(x4) = x4 +x3 +x2 +x+ 1 prime, and suppose

that a = σ(x4) is prime. Then σ(a2) = a2 + a + 1 has at least two distinct prime

factors. Furthermore, if σ(a2) = bc for two distinct primes b and c, then either

11|σ(b4) or 11|σ(c4).
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Proof. Assume that x is prime, and assume further that a = σ(x4) is prime. Then

a = x4 + x3 + x2 + x + 1 and we have σ(a2) = a2 + a + 1. A straightforward

calculation gives us

σ(a2) = x8 + 2x7 + 3x6 + 4x5 + 6x4 + 5x3 + 4x2 + 3x+ 3

= (x2 − x+ 1)(x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3).
(9)

By Lemma 3 we have that σ(a2) must have at least two distinct prime factors,

unless both (x2 − x + 1) and x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x + 3 are powers of

31. But they cannot both be a power of 31. To see why, note that this would make

(x2− x+ 1)3 also a power of 31, and we would have a contradiction due to the fact

that as long as x > 2 we have

(x2 − x+ 1)3 < x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3 < 31(x2 − x+ 1)3.

To prove the last part of this lemma, we now note that if σ(a2) = bc for two primes

b and c we must have that one of the primes is x2 − x + 1 and the other prime is

x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3. Without loss of generality, let us assume that

b = x2 − x + 1 and that c = x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x + 3. It is easy to

check by looking at x modulo 11 that for any x we have that one of the numbers

b4 + b3 + b2 + b+ 1 or c4 + c3 + c2 + c+ 1 or x4 + x3 + x2 + x+ 1 is congruent to

0 modulo 11; since x4 + x3 + x2 + x+ 1 is prime and not equal to 11, we conclude

that either σ(b4) or σ(c4) must be divisible by 11.

Lemma 7. There are no odd primes primes x, a, b, c, d satisfying the conditions:

1. a = σ(x4)

2. σ(a2) = σ(b2)σ(c2)σ(d2)

3. σ(b2), σ(c2), and σ(d2) are all prime.

Proof. Assume that we have such a solution. Then by the same logic as in the proof

of Lemma 6,

σ(a2) = x8 + 2x7 + 3x6 + 4x5 + 6x4 + 5x3 + 4x2 + 3x+ 3

= (x2 − x+ 1)(x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3).
(10)

We have that σ(b2) = b2 + b+1, σ(c2) = c2 +c+1, and σ(d2) = d2 +d+1. Since all

three of these quantities are prime we must have one of them equal to either x2−x+1

or x6 +3x5 +5x4 +6x3 +7x2 +6x+3. Without loss of generality, we will assume that

this is b2+b+1. We have two cases: either b2+b+1 = x6+3x5+5x4+6x3+7x2+6x+3

or b2 + b+ 1 = x2 − x+ 1. The first case is ruled out by Lemma 4 so we must have

b2 + b + 1 = x2 − x + 1. Note that x2 − x + 1 = (x − 1)2 + (x − 1) + 1. Thus,

b2 + b + 1 = (x − 1)2 + (x − 1) + 1 and so b = x − 1 since t2 + t + 1 is a strictly

increasing function for t > 1/2. But b = x− 1 is impossible since b and x are both

odd primes.
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Lemma 8. We cannot have integers a, b, c, d with a ≡ b ≡ c ≡ d ≡ 1 (mod 5) and

also satisfying a2 + a+ 1 = (b2 + b+ 1)(c2 + c+ 1)(d2 + d+ 1).

Proof. This just follows from observing that the left side of the equation is congruent

to 3 modulo 5 and the right side is congruent to 2 modulo 5.

Let (x, a, b, c) be a quadruple of odd primes all greater than 3. We say that they

form a triple threat if they satisfy two conditions:

1. x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)(c2 + c+ 1);

2. a2 + a+ 1, b2 + b+ 1, and c2 + c+ 1 are all prime.

If we could show that there are no triple threats in general, then we could substan-

tially improve our bounds in this paper for both the 3 | N case and the 3 6 |N case.

However, we are presently unable to do that, and so we must satisfy ourselves with

instead proving substantial enough restrictions on what triple threats can look like.

We will in particular prove that we cannot have x congruent to 1 modulo 5 while

also having one of a, b or c also congruent to 1 modulo 5. Assume that (x, a, b, c)

is a triple threat and that x ≡ a ≡ 1 (mod 5). Then without loss of generality one

must have

(c, d) ∈ {(1, 2), (2, 3), (4, 4) (mod 5)}. (11)

We will rule out each of these three options separately. We do so by proving various

statements about the equation x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p with x, a, b,

a2 +a+ 1, b2 + b+ 1 and p all prime. This method of approach has two advantages.

First, while triple threats do not seem to exist, solutions of this equation do exist.

Thus we will at least be proving statements about actual mathematical objects.

Second, this equation appears to be of natural interest for extending results beyond

this paper, as will be discussed later.

Lemma 9. Assume that x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p with x, a2 + a+ 1,

b2 + b+ 1, a, b and p all primes greater than 3. Assume also that a ≤ b. Then we

have one of four possibilities.

1. We have (a2+a+1)|(x−a), (b2+b+1)|(x−b), (x+a+1)|(p(a+b+1)+ x−b
b2+b+1 ),

and (x+ b+ 1)|(p(a+ b+ 1) + x−a
a2+a+1 ).

2. We have (a2 + a+ 1)|(x− a), (b2 + b+ 1)|(x+ b+ 1), and (x+ a+ 1)|(p(b−
a)− x+b+1

b2+b+1 ).

3. We have (a2 +a+ 1)|(x+a+ 1) and (b2 + b+ 1)|(x− b), and (x+ b+ 1)|(p(b−
a) + x+a+1

a2+a+1 ).

4. We have (a2 +a+ 1)|(x+a+ 1) and (b2 + b+ 1)|(x+ b+ 1) and (x−a)|(p(a+

b+ 1)− x+b+1
b2+b+1) and (x− b)|(p(a+ b+ 1)− x+a+1

a2+a+1 ).
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In all four cases, the quantities on the right-hand sides of the divisibility relations

are positive.

Proof. Assume that x2 +x+1 = (a2 +a+1)(b2 +b+1)p with x, a2 +a+1, b2 +b+1,

a, b and p all primes greater than 3. Then

(x− a)(x+ a+ 1) = x2 + x+ 1− (a2 + a+ 1) = (a2 + a+ 1)(p(b2 + b+ 1)− 1)

and

(x− b)(x+ b+ 1) = x2 + x+ 1− (b2 + b+ 1) = (b2 + b+ 1)(p(a2 + a+ 1)− 1).

Since a2 + a+ 1 and b2 + b+ 1 are prime we have four situations:

1. (a2 + a+ 1)|(x− a) and (b2 + b+ 1)|(x− b);

2. (a2 + a+ 1)|(x− a) and (b2 + b+ 1)|(x+ b+ 1);

3. (a2 + a+ 1)|(x+ a+ 1) and (b2 + b+ 1)|(x− b);

4. (a2 + a+ 1)|(x+ a+ 1) and (b2 + b+ 1)|(x+ b+ 1).

Note that it is easy to check that we cannot have a2 + a+ 1|(x− a, x+ a+ 1), and

the symmetric remark applies to b2 + b+ 1. Consider each of these four situations

as a separate case.

Case I. We have (a2 + a+ 1)|(x− a) and (b2 + b+ 1)|(x− b). Set ka = x−a
a2+a+1 and

kb = x−b
b2+b+1 . We have

(x+ a+ 1)|(p(b2 + b+ 1)− 1)

and

(x+ b+ 1)|(p(a2 + a+ 1)− 1).

Note that

x+ a+ 1 = ka(a2 + a+ 1) + 2a+ 1 = kb(b
2 + b+ 1) + a+ b+ 1

and

x+ b+ 1 = ka(a2 + a+ 1) + a+ b+ 1 = kb(b
2 + b+ 1) + 2b+ 1.

We then have

(x+ a+ 1)|(p(x+ a+ 1)− kb(p(b2 + b+ 1)− 1)).

We have that

p(x+a+1)−kb(p(b2 +b+1)−1) = p(kb(b2 +b+1)+a+b+1)−kb(p(b2 +b+1)−1).
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We then note that

p(kb(b2+b+1)+a+b+1)−kb(p(b
2+b+1)−1) = p(a+b+1)+kb = p(a+b+1)+

x− b

b2 + b+ 1
.

The other relation then follows by symmetry.

Case II. We have (a2 + a+ 1)|(x− a) and (b2 + b+ 1)|(x+ b+ 1). Set

ka =
x− a

a2 + a+ 1

and

kb =
x+ b+ 1

b2 + b+ 1
.

We then have that (x+ a+ 1)|(p(b2 + b+ 1)− 1). We have

x+ a+ 1 = ka(a2 + a+ 1) + 2a+ 1 = kb(b
2 + b+ 1) + a− b,

and

(x+ a+ 1)|(kb(p(b2 + b+ 1)− 1)− p(kb(b2 + b+ 1 + 1)− b+ a)) = −(p(b− a)− kb).

We then have (x+a+1)|(p(b−a)− x+b+1
b2+b+1 ). We need to show that p(b−a)− x+b+1

b2+b+1 >
0. Assume that p(b − a) − kb ≤ 0. Note in this case we have b 6= a, and so
p(b − a) ≤ x+b+1

b2+b+1 . Since a ≡ b ≡ 2 (mod 3), we have that b − a ≥ 6. Thus,

6p ≤ x+b+1
b2+b+1 , and we get that 2pb2 < x. Then

2pa2 < 2pb2 < x.

We then have
4p2a2b2 < x2 < x2 + x+ 1 = pa2b2,

which is a contradiction. Thus, p(b− a)− kb is positive.

Case III. We have that

(a2 + a+ 1)|(x+ a+ 1)

and
(b2 + b+ 1)|(x− b).

We set ka = x+a+1
a2+a+1 and kb = x−b

b2+b+1 . We then have from logic identical to that
in Case II that (x + b + 1)|(p(a − b) − ka). The right-hand side is negative, so
(x+ b+ 1)|(p(b− a) + ka) is positive.

Case IV. We have
(a2 + a+ 1)|(x+ a+ 1)

and
(b2 + b+ 1)|(x+ b+ 1).
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We then have (x − a)|(p(x − a) − kb(p(b2 + b + 1) − 1) where kb = x+b+1
b2+b+1 . From

x − a = kb(b
2 + b + 1) − a − b − 1 we get that (x − a)|(p(a + b + 1) − kb). The

other divisibility relation follows from similar reasoning. Positivity follows from an
argument similar to that of Case II.

Lemma 10. Assume that x2 +x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p, with x, a2 + a+ 1,

b2 + b+ 1, a, b and p all primes greater than 3 and a ≤ b. Then 2b < p.

Proof. Note that we must have that x ≡ a ≡ b ≡ 2 (mod 3). We consider each of

the four cases from Lemma 9.

Case I. We have that (x + a + 1)|(p(a + b + 1) + kb) where kb = x−b
b2+b+1 . Thus

x+ a+ 1 ≤ p(a+ b+ 1) + kb. This gives us that

kb(b
2 + b+ 1) + a+ b+ 1 ≤ p(a+ b+ 1) + kb.

This is the same as
kbb

2

a+ b+ 1
+

kbb

a+ b+ 1
+ 1 ≤ p.

Note that a + b + 1 ≤ 2b and that congruence arguments give us that kb ≥ 6. We

then have that a+ b+ 1 ≤ 2b+ 1 < 3b. We get that

2b+ 2 <
kbb

2

a+ b+ 1
+

kbb

a+ b+ 1
+ 1 ≤ p.

Case II. We have (x+a+1)|(p(b−a)−kb) with kb = x+b+1
b2+b+1 . Note that p(b−a)−kb

is positive. We have that p(b − a) − kb ≡ 1 (mod 6), and x + a + 1 ≡ 5 (mod 6).

Therefore h(x+ a+ 1) = p(b− a)− kb for some h ≥ 5. Thus we have

5(x+ a+ 1) ≤ p(b− a)− kb.

Since kb = x+b+1
b2+b+1 = x

b2+b+1 + b+1
b2+b+1 and b > 3, we have that kb <

x
12 . Thus

5x ≤ p(b− a)− x

7
.

Then 36
5 x ≤ p(b− a). Since b2 + b+ 1 ≤ x, the desired inequality follows.

Case III. Case III is very similar to Case II. We have that (x+b+1)|(p(b−a)+ka)

where ka = x+a+1
a2+a+1 , We have that x+ b+ 1 ≤ p(b− a) + ka. We have ka ≤ x

13 , and

so we have that
12

13
x ≤ p(b− a)− b− 1.

From (b2 + b + 1)|(x − b), we get that b2 + b + 1 ≤ x
6 which gives us the desired

inequality.
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Case IV. We then have (x−a)|(p(x−a)− kb(p(b2 + b+ 1)− 1) where kb = x+b+1
b2+b+1 .

From x− a = kb(b
2 + b+ 1)− a− b− 1 we get that (x− a)|(p(a+ b+ 1)− kb). Thus

kb(b
2 + b + 1) − a − b − 1 ≤ p(a + b + 1) − kb and so we get that from kb ≥ 5 and

kbb
2 < p(a+ b+ 1) that 2b < p.

We get the following as an immediate corollary.

Corollary 2. Assume that x2 + x + 1 = (a2 + a + 1)(b2 + b + 1)p. Assume that

a2 + a+ 1, b2 + b+ 1, and p > 3 are all prime. Then p > x2/5.

Proof. Assume that x2 +x+1 = (a2 +a+1)(b2 + b+1)p, with a2 +a+1, b2 + b+1,

and p prime. As usual, assume that a ≤ b. Then from Lemma 10 we have that

x2 + x+ 1 = p(a2 + a+ 1)(b2 + b+ 1) < p(p
2

4 + p
2 + 1)(p

2

4 + p
2 + 1) ≤ p5 from which

the desired inequality follows.

Lemma 11. If x2 +x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p, with a2 + a+ 1, b2 + b+ 1, a,

x and p are all primes prime greater than 3, and b ≥ a ≥ 5, then a2 +a+ 1 < 49
4 p.

Proof. This proof requires breaking down the cases above in further detail. In Case

I, x+ b+ 1 ≤ p(a+ b+ 1) + ka. Note that ka ≤ x
7 which yields

6

7
x ≤ p(a+ b+ 1)− b− 1.

So

x ≤ 7

6
(p(a+ b+ 1)− b− 1) ≤ 7

6
p(3b)− 1 =

7

2
pb− 1.

We then have that

p(a2 + a+ 1)b2 < p(a2 + a+ 1)(b2 + b+ 1) = x2 + x+ 1

which together with

x2 + x+ 1 ≤ (
7

2
(pb− 1))2 +

7

2
pb− 1 + 1 <

49

4
p2b2

implies that a2 + a+ 1 < 49
4 p. The other cases are similar.

Lemma 12. If x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p, with a2 + a+ 1, b2 + b+ 1,

and p > 3 prime and b ≥ a ≥ 3, then a2 + a+ 1 < ( 25
2 )1/3x2/3 ≤ 3x2/3.

Proof. We have

x2 + x+ 1 = p(a2 + a+ 1)(b2 + b+ 1) ≥ 4

49
(a2 + a+ 1)3.

Thus,
50

4
x2 ≥ (a2 + a+ 1)3

which leads to the desired inequalities.
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Note that this means that we can take ka ≥ x1/3

3 in all cases of Lemma 10 and

can get tighter versions of that result.

Lemma 13. Assume that x is a prime. Then x2 + x+ 1 is not a perfect cube.

Proof. Assume that x is prime and x2 + x+ 1 = k3. Then we have that

x(x+ 1) = k3 − 1 = (k − 1)(k2 + k + 1).

Since x is prime, either x|(k− 1) or x|(k2 + k+ 1). If x|(k− 1), then x ≤ k− 1 and

k3 ≥ (x+ 1)3 > x2 + x+ 1 = k3, which is impossible. Now consider the possibility

that x|(k2 + k + 1). Since x is prime, then either x = 3, which does not give a

solution, or x ≡ 1 (mod 3). Thus, x2 + x + 1 ≡ 3 (mod 9), but no perfect cube is

congruent to 3 modulo 9 and so we again reach a contradiction.

Lemma 14. Assume that x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p, with a2 + a+ 1,

b2 + b+ 1, a, and b all primes greater than 3. Assume that b > 5. Further assume

that x ≡ a ≡ b ≡ 1 (mod 5). Then 11
3 b < p.

Proof. This follows the same sort of logic as Lemma 10.

Case I. We get that
kbb

2

a+ b+ 1
+

kbb

a+ b+ 1
+ 1 ≤ p.

Note that congruence arguments give us that kb ≥ 6 and thus a+b+1 ≤ 2b+1 < 3b.

We have by congruence arguments that kb ≥ 30, and so 10b < p.

Case II. We have as before 34
35x ≤ p(b − a) and x + b + 1 = kb(b

2 + b + 1). Note

that kb is odd. We have that x+ b+ 1 ≡ 2 (mod 3) and b2 + b+ 1 ≡ 1 (mod 3), so

kb ≡ 2 (mod 3). Similarly, we have that kb ≡ 1 (mod 5). So kb ≥ 11. We then have

b2 + b+ 1 ≤ x+ b+ 1

11
.

This is the same as

11b2 + 10b+ 10 ≤ x,

and so

11b2 + 10b+ 10 ≤ 35

34
p(b− a),

which is stronger than the desired inequality.

Case III.We have (12/13)x ≤ p(b − a) − b − 1 and kb = x−b
b2+b+1 . We then have

30|kb, and so

b2 + b+ 1 ≤ x− b
30

.

Thus, 30b2 + 31b + 30 ≤ x, and combining as before yields an inequality stronger

than the one desired.
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Case IV.We have that kb = x+b+1
b2+b+1 as in Case II. As in Case II, we get that kb is

odd, kb ≡ 2 (mod 3) and kb ≡ 1 (mod 5). So kb ≥ 11. In Case IV we had that

kbb
2 < p(a+ b+ 1) and since a+ b+ 1 < 3b this becomes

11b2 < 3pb

which implies that
11

3
b < p.

Lemma 15. Suppose that x, a, b, and p are all primes greater than 3 where

x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p.

Suppose also that a2 + a+ 1 and b2 + b+ 1 are prime. Suppose further that a ≤ b.
Then in Case II and Case III we have a2 + a+ 1 < p

16 .

Proof. Assume we are in Case II. So we have (x + a + 1)|(p(b − a) − x+b+1
b2+b+1 ). We

note that x+ a+ 1 ≡ 2 (mod 3) and p(b− a)− x+b+1
b2+b+1 ≡ 1 (mod 3). Note also that

both quantities are odd. We thus have m(x+ a+ 1) = p(b− a)− x+b+1
b2+b+1 for some

m ≥ 5. We then have

5(x+ a+ 1) ≤ p(b− a)− x+ b+ 1

b2 + b+ 1
.

We then have x < pb
5 − 2. Then

(a2 + a+ 1)(b2 + b+ 1)p = x2 + x+ 1 = (
pb

5
− 2)2 +

pb

5
− 2 + 1 <

p2b2

25
.

Therefore we have,

(a2 + a+ 1)(b2 + b+ 1)p <
p2b2

25

and so we have that a2 + a+ 1 < p
25 which implies the desired result.

Now for Case III: We have that (x+ b+ 1)|(p(b− a) + x+a+1
a2+a+1 ). By similar logic

as above we have that m(x+ b+ 1) = p(b− a) + x+a+1
a2+a+1 where m ≡ 5 (mod 6). We

have 5(x+ b+ 1) ≤ p(b− a) + x+a+1
a2+a+1 and so

x <
pb

4
− 2.

Thus,

(a2 + a+ 1)(b2 + b+ 1)p = x2 + x+ 1 =

(
pb

4
− 2

)2

+
pb

4
− 2 + 1 <

p2b2

16
,

from which the result follows.
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Lemma 16. Suppose that x, a, b, and p are all primes greater than 3 where

x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p.

Suppose that a2 + a+ 1 and b2 + b+ 1 are prime. Suppose also that a ≤ b. Assume

further that we have Case IV and that we have x − a = p(a + b + 1) − kb and

x− b = p(a+ b+ 1)− ka. Then we must have a = b and (a2 + a+ 2)|(7(p+ 1)).

Proof. Assume as given. We then have

(x− b)(a2 + a+ 1) + x+ a+ 1 = p(a+ b+ 1)(a2 + a+ 1), (12)

and

(x− a)(b2 + b+ 1) + x+ b+ 1 = p(a+ b+ 1)(b2 + b+ 1). (13)

Assume for now that a 6= b. from Equations (12) and (13) we have that

(x− b)(a2 + a+ 1) + x+ a+ 1

a2 + a+ 1
= p(a+ b+ 1) =

(x− a)(b2 + b+ 1) + x+ b+ 1

b2 + b+ 1
.

(14)

We can solve the above for x to get that

x =
(b− a)(a2 + a+ 1)(b2 + b+ 1)− (b+ 1)(a2 + a+ 1) + (a+ 1)(b2 + b+ 1)

b2 + b− a2 − a
.

(15)

Now, it turns out the top and bottom both have a factor of b − a and this is a

meaningful solution for x because we have assumed that b 6= a. Simplifying we get

that

x =
a2b2 + a2b+ a2 + ab2 + 2ab+ 2a+ b2 + 2b+ 1

a+ b+ 1
,

and this forces x to be even which is a contradiction since x is an odd prime. We

may thus assume that a = b.

Thus, Equation (12) and Equation (13) become the same thing:

(x− a)(a2 + a+ 1) + x+ a+ 1 = p(2a+ 1)(a2 + a+ 1). (16)

We may rearrange Equation (16) to obtain

x(a2 + a+ 2) = (p(2a+ 1) + a)(a2 + a+ 1)− a− 1, (17)

(a2 + a+ 2)|((p(2a+ 1) + a)(a2 + a+ 1)− a− 1). (18)

We also trivially have

(a2 + a+ 2)|((p(2a+ 1) + a)(a2 + a+ 2)). (19)
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We may then conclude that a2 + a+ 2 divides the difference of Equation (18) and

Equation (19). So a2 + a+ 2 divides p(2a+ 1) + 2a+ 1 = (p+ 1)(2a+ 1). It is easy

to check that gcd(a2 + a+ 2, 2a+ 1)|7. Thus, we have

(a2 + a+ 2)|(7(p+ 1)). (20)

which was what was claimed.

Lemma 17. Suppose that x, a, b and p are all primes greater than 3 where

x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p.

Suppose further that x ≡ a ≡ b ≡ 1 (mod 5) and that a2 + a+ 1 and b2 + b+ 1 are

prime. Suppose also that a ≤ b, and p ≥ 47. Then we have a2 + a+ 1 < p.

Proof. We will break into four cases in the same way as before. Cases II and III

are handled by Lemma 15. In this situation, almost all the serious work will be in

Case IV. We will handle Case I and then Case IV. Case I: We have as before that

(x+b+1)|(p(a+b+1)+ka) where ka = x−a
a2+a+1 . Set m(x+b+1) = p(a+b+1)+ka.

We have that x+ b+ 1 ≡ 3 (mod 5) and that p(a+ b+ 1) + ka ≡ 1 (mod 5). Thus,

we have m ≡ 2 (mod 5). Similarly, we have that m ≡ 1 (mod 3). So m ≥ 7 and so

7(x+ b+ 1) ≤ p(a+ b+ 1) + ka. Since a2 + a+ 1 > 7, we have that ka ≤ x
7 , so

48

7
x ≤ p(a+ b+ 1)− 7b− 7

which yields

x ≤ 7

48
p(a+ b+ 1)− 49

48
b− 49

48
.

We have that a+ b+ 1 < 3b and so

x ≤ 7

16
pb− 49

48
− 49

48
≤ 7

16
pb− 2.

We then have

(a2 + a+ 1)(b2 + b+ 1)p = x2 + x+ 1 ≤ (
7

16
pb− 2)2 +

7

16
pb− 2 + 1 <

(
7

16

)2

(pb2).

From the above we get that a2 + a+ 1 ≤
(

7
16

)2
p < p.

Case IV. We have (x− a)ma = p(a+ b+ 1)− kb and (x− b)mb = p(a+ b+ 1)− ka
for some ma and mb.

First, let us consider the situation where ma = mb = 1. By Lemma 16 we have

that k(a2 + a + 2) = 7(p + 1) for some k. Note that a2 + a + 2 ≡ 4 (mod 5). We

also have 7(p + 1) ≡ 1 (mod 5). Thus, we have k ≡ 4 (mod 5). Similarly, we have
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that k ≡ 1 (mod 3). So k ≡ 4 (mod 15). Consider the possibility of k = 4. If that

is the case, then we have 4(a2 + a+ 2) = 7(p+ 1), and this is the same as

7p = 4a2 + 4a+ 1 = (2a+ 1)2.

But then we must have p = 7 and a = 3, which is ruled out by our initial assumption

that a > 3. Thus, since k ≡ 4 (mod 15), we get that k ≥ 19. In that case we have

19(a2 + a + 1) ≤ 7(p + 1), from which it follows that a2 + a + 1 < p. Next we will

consider ma = 2 and mb = 1. We need to consider then the equation

2(x− a) = p(a+ b+ 1)− kb.

Since mb 6= ma we have that a 6= b, and thus a ≤ b−30 (since a and b agree modulo

30). So we have that

x =
p(a+ b+ 1)

2
− kb

2
+ a ≤ p(2b− 29)

2
− ka

2
+ a.

We note that Lemma 10 implies that a < p, and so we have that

x ≤ pb− 29p

2
+ p < pb− 2,

from which the same logic as used in Case I holds. The case when mb = 2 and

ma = 1 is nearly identical, as is the case when either ma or mb being 2 but with

a 6= b. We will then next consider the case ma = mb = 2, and a = b. We have

2(x− a) = p(2a+ 1)− x+ a+ 1

a2 + a+ 1
. (21)

Solving for x we obtain

(2a2 + 2a+ 3)x = (p(2a+ 1) + 2a)(a2 + a+ 1)− a− 1. (22)

Equations (22) along with the fact that x2 + x+ 1 = (a2 + a+ 1)2p together imply

that p = 4a4+8a3+8a2+8a+7
(2a+1)2 . Thus, we have (2a + 1)2|(4a4 + 8a3 + 8a2 + 8a + 7)

but 4a4 + 8a3 + 8a2 + 8a + 7 = (2a + 1)2(a2 + a + 1) + (−a2 − a + 6). Thus,

(2a+ 1)2|(a2 + a− 6) which is impossible.

By the above remarks we must have either ma ≥ 3 or mb ≥ 3. We will consider

ma ≥ 3 (the case for mb ≥ 3 is essentially identical). We have

3(x− a) ≤ p(a+ b+ 1)− kb.

We note that a+ b+ 1 ≤ 2b+ 1, and thus

x ≤ p(2b+ 1)

3
− kb + a.
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We note that p ≥ 47, together with Lemma 11, gives us that a < p
3 . We again

obtain that

x ≤ pb− 2,

and again draw the same conclusion.

Lemma 18. Suppose that we have odd primes x, a, b, p all primes greater than 3

where

x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p.

Suppose further that x ≡ a ≡ 1 (mod 5) and that b ≡ 2 (mod 5). Suppose that

a2 + a+ 1 and b2 + b+ 1 are prime. Suppose that a ≤ b, and p ≥ 47. Then we have

a2 + a+ 1 < p.

Proof. As usual, we will have four cases to check, and as in the last lemma most of

the difficulty will be in Case IV. In this lemma, as in the last one, we will be able to

rely on the previous results concerning this situation. However, due to the different

congruence assumption we cannot here make use of Lemma 17. Note that in this

lemma we now have p ≡ 3 (mod 5), rather than in the previous lemma where we

had p ≡ 2 (mod 5).

Case I. We have as before that (x+b+1)|(p(a+b+1)+ x−a
a2+a+1 ). Set m(x+b+1) =

p(a+b+1)+ x−a
a2+a+1 . We have that p(a+b+1)+ x−a

a2+a+1 ≡ 2 (mod 5) and x+b+1 ≡ 4

(mod 5). Thus m ≡ 3 (mod 5). Note that m is odd, and also that (3,m) = 1, and

so m ≥ 13. We then have

13(x+ b+ 1) ≤ p(a+ b+ 1) +
x− a

a2 + a+ 1
.

The same logic as in the previous lemma then applies. Lemma 15 handles Case II

and Case III.

For Case IV we have that (a2 +a+1)|(x+a+1) and (b2 +b+1)|(x+b+1). Note

that unlike in Lemma 17 we have immediately that a 6= b because they disagree

modulo 5. We have (x − a)|(p(a + b + 1) − kb) and (x − b)|(p(a + b + 1) − ka)

where kb = x+b+1
b2+b+1 , and ka = x+a+1

a2+a+1 . We have (x− a)ma = p(a+ b+ 1)− kb and

(x−b)mb = p(a+b+1)−ka for some positive integers ma and mb. We will consider

various possible options for the pair (ma,mb). The pair (1, 1) is already ruled out

since then Lemma 16 would force a = b.

Since we have that a 6= b, it follows that a ≤ b − 6 (since a < b and a ≡ b + 1

(mod 30)). So we have that

x =
p(a+ b+ 1)

2
− kb

2
+ a ≤ p(2b− 6)

2
− ka

2
+ a.

Note that Lemma 10 implies that a < p, and so we have that

x ≤ pb− 3p+ p < pb− 2,
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from which the same logic as used in Case I holds. For the remaining possible options

for (ma,mb) we follow logic that is essentially identical to those in remaining parts

of the Case IV of the proof of Lemma 17.

Using nearly identical logic to the above Lemma we obtain the following Lemma.

Lemma 19. Suppose that we have odd primes x, a, b, p, all greater than 3, where

x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p.

Suppose further that a ≡ 2 (mod 5), x ≡ b ≡ 1 (mod 5). Assume that a2 +a+1 and

b2 + b+ 1 are prime. Finally, assume that a ≤ b, and p ≥ 47. Then a2 +a+ 1 < p.

Lemma 20. There are no solutions to the equation

x2 + x+ 1 = (p2 + p+ 1)(q2 + q + 1)(r2 + r + 1)

with x, p, q, r, p2+p+1, q2+q+1, r2+r+1 all prime and with x ≡ p ≡ q ≡ 1 (mod

5). That is, there does not exist any triple threat (x, p, q, r) where x ≡ p ≡ q ≡ 1

(mod 5).

Proof. Assume we have a solution. We note that we must also have r ≡ 2 (mod

5). We must have min(p2 + p+ 1, q2 + q + 1, q2 + q + 1) > 47. If any were not, we

could use Corollary 2 to conclude that we have 47 > x2/5, this gives us only a finite

set of x to check and we can easily verify that none of them are solutions. We may

without loss of generality also assume that p ≤ q. We use Lemma 17 to conclude

that p2 + p + 1 < r2 + r + 1, and so p < r. We may apply Lemma 18 to get that

p < q. We have two cases to consider. Either p < r < q or p < q < r. If p < r < q,

then Lemma 18 gives us that r2 + r + 1 < p2 + p + 1 and hence r < p which is

impossible. So we may assume that p < q < r, but then by Lemma 19 we have that

q2 + q + 1 < p2 + p+ 1 and hence q < p which is impossible. So all cases have lead

to a contradiction.

The basic thrust of the next set of results is very similar.

Lemma 21. Suppose that x2 + x + 1 = (a2 + a + 1)(b2 + b + 1)p where x, a, b,

a2 + a + 1, b2 + b + 1 and p are odd primes greater than 3. Suppose further that

p = c2 + c+ 1 for some c where c ≡ 5 (mod 6). Suppose that a ≤ b and that we are

in Case I. Then a2 + a+ 1 < p
4 .

Proof. Assume as given. So we have (x + a + 1)|(p(a + b + 1) + x−b
b2+b+1 ) and (x +

b+ 1)|(p(a+ b+ 1) + x−a
a2+a+1 ). We may set ma(x+ a+ 1) = p(a+ b+ 1) + x−b

b2+b+1

and mb(x+ b+ 1) = p(a+ b+ 1) + x−a
a2+a+1 We will first assume that ma = mb = 1

and then handle the remaining cases. If ma = mb = 1, then we have

x+ a+ 1 = p(a+ b+ 1) +
x− b

b2 + b+ 1
(23)
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and

x+ b+ 1 = p(a+ b+ 1) +
x− a

a2 + a+ 1
(24)

We will first assume that a 6= b, and arrive at a contradiction. We will then handle

a = b (which is where we will need the assumption that p = c2 + c + 1). Assume

that a 6= b. Then we may subtract Equation (23) from Equation (24) to get that

b− a =
x− a

a2 + a+ 1
− x− b
b2 + b+ 1

.

This is the same as

(a2 + a+ 1)(b2 + b+ 1)(b− a) = x(b− a)(a+ b+ 1) + ab(b− a) + (b− a).

Since b 6= a we have b− a 6= 0 and so we may divide by b− a to get

(a2 + a+ 1)(b2 + b+ 1) = x(a+ b+ 1) + ab+ 1.

This is the same as x = a2b2+a2b+b2a+a2+b2+a+b
a+b+1 . But we must have a ≡ b ≡ 2 (mod

3) and also x ≡ 2 (mod 3). But a ≡ b ≡ 2 (mod 3) forces the right-hand side of the

above to be congruent to 1 modulo 3. So we must have a = b. Since a = b we have

x+ a+ 1 = p(2a+ 1) +
x− a

a2 + a+ 1
,

which can be rearranged to

(p− 1)(2a2 + 3a2 + 3a+ 1) = −a3 + a2(x− a) + ax.

We have that (a, 2a2 + 3a2 + 3a+ 1) = 1 and so a|(p− 1). Now since p = c2 + c+ 1

this is the same as saying that a|(c(c + 1)). Either a|c or a|(c + 1). If a|c, then

either a = c, or a < c. If a = c, then p = a2 + a+ 1 and x2 + x+ 1 = (a2 + a+ 1)3.

But this would contradict Lemma 13. If a < c, then since a|c and a ≡ c ≡ 5 (mod

6), we would have 7a ≤ c, from which it easily follows that a2 + a + 1 < p
4 . If

we have a|(c + 1), then since 6|(c + 1), we have that 6a|c + 1 and so 6a ≤ c + 1,

from which it easily follows that a2 + a + 1 < p
4 . We now need to handle the case

when ma and mb are not both equal to 1. We will look at the case when ma 6= 1

(mb 6= 1 is essentially identical). We have that ma(x+a+1) = p(a+b+1)+ x−b
b2+b+1

for some ma > 1. We note that we cannot have ma even because the right-hand

side of the equation is odd. We also cannot have ma = 3 because the right-hand

side is congruent to 2 modulo 3. We therefore have ma ≥ 5. We then have :

5(a+ x+ 1) ≤ p(a+ b+ 1) + x−b
b2+b+1 from which the desired inequality follows.

We would like in Lemma 21 to remove the need for the assumption that p =

c2 + c+ 1 but for our results here that is not necessary.
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Lemma 22. Suppose that x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p where x, a, b , p,

a2 + a+ 1, and b2 + b+ 1 are all prime. Assume that x ≡ a ≡ 1 (mod 5) and that

b ≡ 4 (mod 5). Assume that a < b. Finally, assume that p = c2 + c + 1 for some

c ≡ 5 (mod 6). Then a2 + a+ 1 < p
4 .

Proof. Note that p ≡ 1 (mod 5). We again split into four cases. Case I is handled

by Lemma 21. As usual, Cases II and III are handled by Lemma 15. So we need

only concern ourselves with Case IV.

In Case IV we have: (x − b)|(p(a + b + 1) − x+a+1
a2+a+1 ). We then have that there

exists an mb such that

mb(x− b) = p(a+ b+ 1)− x+ a+ 1

a2 + a+ 1
.

Note that x− b ≡ 2 (mod 5), and p(a+ b+ 1)− x+a+1
a2+a+1 ≡ 0 (mod 5). So mb ≥ 5.

We then have that 5(x− b) ≤ p(a+ b+ 1)− x+a+1
a2+a+1 from which the desired bound

follows.

Using nearly identical logic we have the following lemma.

Lemma 23. Suppose that x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p where x, a, b, p,

a2 + a + 1 and b2 + b + 1 are all prime. Assume that x ≡ b ≡ 1 (mod 5), a ≡ 4

(mod 5), and a < b. Assume also that p = c2 + c+ 1 for some c ≡ 5 (mod 6). Then

a2 + a+ 1 < p
4 .

Lemma 24. Suppose that x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1)p where x, a, b, p,

a2 +a+ 1 and b2 + b+ 1 are all prime. Assume that x ≡ 1 (mod 5), a ≡ b ≡ 4 (mod

5), p ≡ 3 (mod 5), and that a < b. Then a2 + a+ 1 < p
16 .

Proof. We have our four cases as usual with Cases II and III handled by Lemma

15. In Case I we have as before that (x + b + 1)|(p(a + b + 1) + x−a
a2+a+1 ). Set

m(x + b + 1) = p(a + b + 1) + x−a
a2+a+1 . We have that x + b + 1 ≡ 1 (mod 5) and

p(a + b + 1) + x−a
a2+a+1 = 4 (mod 5). So m ≡ 4 (mod 5). Since (6,m) = 1 we have

that m ≥ 19. We then have that

19(x+ b+ 1) ≤ p(a+ b+ 1) +
x− a

a2 + a+ 1

from which the desired inequality follows.

In Case IV we have (x− b)|(p(a+ b+1)− x+a+1
a2+a+1 ). We set m(x− b) = p(a+ b+1)−

x+a+1
a2+a+1 . We note that x−b ≡ 2 (mod 5), and p(a+b+1)− x+a+1

a2+a+1 ≡ 1 (mod 5). Thus,

m ≡ 2 (mod 5) and so m ≥ 7. We then have that 7(x− b) ≤ p(a+ b+ 1)− x+a+1
a2+a+1

from which the desired inequality follows.

Lemma 25. There are no solutions to the equation

x2 + x+ 1 = (p2 + p+ 1)(q2 + q + 1)(r2 + r + 1)
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with x, p, q, r, p2 + p+ 1, q2 + q+ 1, r2 + r+ 1 all prime and with x ≡ p ≡ 1 (mod

5) and q ≡ r ≡ 4 (mod 5). That is, there does not exist any triple threat (x, p, q, r)

where x ≡ p ≡ 1 (mod 5) and q ≡ r ≡ 4 (mod 5).

Proof. Assume we have such a solution. Without loss of generality we may assume

that q ≤ r. We then have from Lemma 24 that q < p. We thus have either q < p < r

or q < r < p (we cannot have p = r since they disagree modulo 5). If we have that

q < p < r, then from Lemma 22 we have that p < q which is a contradiction. If we

have q < r < p, then by Lemma 23 we have that r < q which is a contradiction.

Since all possibilities lead to a contradiction, the corresponding type of triple threat

cannot exist.

We now turn our attention to our final type of triple threat.

Lemma 26. Suppose that x2 + x + 1 = (a2 + a + 1)(b2 + b + 1)p where x, a, b,

a2 + a + 1, b2 + b + 1 and p are primes. Suppose further that x ≡ b ≡ 1 (mod

5), a ≡ 3 (mod 5), and p ≡ 2 (mod 5). Suppose that a < b. Then we have that

a2 + a+ 1 < p.

Proof. We split into four cases as usual with cases II and III handled by Lemma 15.

Case I. We have that (x+b+1)|(p(a+b+1)+ x−b
b2+b+1 ). We have that m(x+b+1) =

p(a + b + 1) + x−b
b2+b+1 for some m. We note that x + b + 1 ≡ 3 (mod 5) and

p(a+ b+ 1) + x−b
b2+b+1 ≡ 1 (mod 5). We then have that m ≡ 2 (mod 5). Since m is

odd, we have that m ≥ 7, and 7(x+ b+ 1) ≤ p(a+ b+ 1) + x−b
b2+b+1 , from which the

desired inequality follows.

Case IV. We have that (x − a)|(p(a + b + 1) − x+b+1
b2+b+1 ). We have that for some

m, m(x − a) = p(a + b + 1) − x+b+1
b2+b+1 . We have that x − a ≡ 3 (mod 5), and

p(a + b + 1) − x+b+1
b2+b+1 ≡ 4 (mod 5). We then have that m ≡ 3 (mod 5). We then

have that 3(x− b) ≤ p(a+ b+ 1)− x+b+1
b2+b+1 from which the inequality follows.

Using nearly identical logic we have the following lemma.

Lemma 27. Suppose that x2 + x + 1 = (a2 + a + 1)(b2 + b + 1)p where x, a, b,

a2 + a + 1, b2 + b + 1 and p are primes. Suppose further that x ≡ a ≡ 1 (mod

5), b ≡ 3 (mod 5), and p ≡ 2 (mod 5). Suppose that a < b. Then we have that

a2 + a+ 1 < p.

Using similar logic we also have the next lemma.

Lemma 28. Suppose that x2 + x + 1 = (a2 + a + 1)(b2 + b + 1)p where x, a, b,

a2 + a+ 1, b2 + b+ 1 and p are primes. Suppose further that x ≡ 1 (mod 5), a ≡ 2

(mod 5), b ≡ 3 (mod 5), and p ≡ 3 (mod 5). Suppose that a < b. Then we have

that a2 + a+ 1 < p.
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Proof. We again split into four cases and handle cases II and III via Lemma 15.

Case I. We have that (x+a+1)|(p(a+b+1)+ x−b
b2+b+1 ). We have that x+a+1 ≡ 4

(mod 5), and p(a + b + 1) + x−b
b2+b+1 ≡ 1 (mod 5). The rest of the case follows as

usual.

Case IV. We have that (x − a)|(p(a + b + 1) − x+b+1
b2+b+1 ). We have that x − a ≡ 4

(mod 5), and that p(a+ b+ 1)− x+b+1
b2+b+1 ≡ 3 (mod 5), and the rest of the argument

follows as usual.

By nearly identical logic we have the following lemma.

Lemma 29. Suppose that x2 + x + 1 = (a2 + a + 1)(b2 + b + 1)p where x, a, b,

a2 + a+ 1, b2 + b+ 1 and p are primes. Suppose further that x ≡ 1 (mod 5), a ≡ 3

(mod 5), b ≡ 1 (mod 5), and p ≡ 2 (mod 5). Suppose that a < b. Then we have

that a2 + a+ 1 < p.

Proof. We again split into four cases and handle cases II and III via Lemma 15.

Case I: we have that (x+a+ 1)|(p(a+ b+ 1) + x−b
b2+b+1 ). We have that x+a+ 1 ≡ 4

(mod 5), and p(a + b + 1) + x−b
b2+b+1 ≡ 1 (mod 5). The rest of the case follows as

usual.

Case IV. We have that (x − a)|(p(a + b + 1) − x+b+1
b2+b+1 ). We have that x − a ≡ 4

(mod 5) and that p(a + b + 1) − x+b+1
b2+b+1 ≡ 3 (mod 5). The rest of the argument

follows as usual.

We are now in a position where we may prove the following lemma.

Lemma 30. There are no solutions to the equation

x2 + x+ 1 = (p2 + p+ 1)(q2 + q + 1)(r2 + r + 1)

with x, p, q, r, p2 + p+ 1, q2 + q+ 1, r2 + r+ 1 all prime and with x ≡ p ≡ 1 (mod

5) and q ≡ 2 (mod 5), and r ≡ 3 (mod 5). That is, there does not exist any triple

threat (x, p, q, r) where x ≡ p ≡ 1 (mod 5) and q ≡ 2 (mod 5), r ≡ 3 (mod 5).

Proof. Assume we have such an (x, p, q, r). Either p < q or q < p (they cannot be

equal since they disagree modulo 5). First, let us consider the case that p < q. Then

by Lemma 18, we have that p < r. We then have either p < q < r or p < r < q. Let

us first consider the case when p < q < r. We then have by Lemma 28, that q < p

which is a contradiction. Let us then consider the case p < r < q. We may then

use Lemma 29 to conclude that p < r which is a contradiction. Thus, both of the

possibilities for p < q lead to a contradiction. We thus must have q < p. From q < p

and Lemma 19 we me must have q < r. Thus we have either q < p < r or q < r < p.

If we have q < p < r, then by Lemma 29, we have that p < q. If q < r < p we

may use Lemma 29 to get that r < q and so we have a contradiction. So in each
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situation we have a contradiction and so the intended type of triple threat does not

exist.

Lemma 31. If (x, a, b, c) is a triple threat with x ≡ 1 (mod 5) then none of a, b or

c may be 1 (mod 5).

Proof. We can enumerate all possible triple threats modulo 5 with x ≡ 1 (mod

5). At least one of a, b or c is congruent to 1 modulo 5. We then see that, up to

relabeling of the variables, such a triple threat must be one of the forms ruled out

by Lemma 20, Lemma 25, or Lemma 30.

Lemma 32. Suppose that a and c are distinct odd primes, with a2 + a+ 1 prime.

Assume further that (a2 + a + 1)|(c2 + c + 1). Then a2 + a + 1 < c
2 . Furthermore,

if (3, c2 + c+ 1) = 1, then a2 + a+ 1 < 2
9c.

Proof. Assume as given. Since c2 + c + 1 ≡ 0 (mod a2 + a + 1), and a2 + a + 1 is

prime, we must have either c ≡ a (mod a2 +a+ 1) or c ≡ a2 (mod a2 +a+ 1) (since

(a2 + a+ 1)|((c− a)(a+ c+ 1))). We have c 6= a by assumption. We also have that

c 6= a2 since c is prime. We then note that a + (a2 + a + 1) and a2 + (a2 + a + 1)

are both even and so c cannot be equal to either. Thus, we have that

c ≥ a+ 2(a2 + a+ 1) > 2(a2 + a+ 1)

from which the result follows.

Now, under the additional assumption that (3, c2+c+1) = 1, we must have either

c = 3 (which immediately leads to a contradiction), or we must have c ≡ 2 (mod 3).

Since a2 +a+1 is prime, we must have a ≡ 2 (mod 3). Because a+2(a2 +a+1) ≡ 1

(mod 3), we have c 6= a + 2(a2 + a + 1). Similarly, a2 + 2(a2 + a + 1) ≡ 0 (mod

3), so c 6= a2 + 2(a2 + a + 1). We can rule out the next two possible values for

c, a + 3(a2 + a + 1) and a2 + 3(a2 + a + 1), since they are both even. Then since

a+ 4(a2 + a+ 1) ≡ 0 (mod 3), this is also not an acceptable value of c either, and

so

c ≥ a2 + 4(a2 + a+ 1) >
9

2
(a2 + a+ 1)

which is the desired inequality.

Lemma 33. There are no odd primes a, b, c, with a2 + a+ 1 and b2 + b+ 1 prime,

and satisfying

c2 + c+ 1 = 3(a2 + a+ 1)(b2 + b+ 1).

Proof. Assume we have odd primes a, b, c, with both a2 +a+1 and b2 +b+1 prime,

and satisfying

c2 + c+ 1 = 3(a2 + a+ 1)(b2 + b+ 1).
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We may then apply Lemma 32 twice to conclude that

a2 + a+ 1 <
c

2

and that

b2 + b+ 1 <
c

2
.

We then have

c2 + c+ 1 = 3(a2 + a+ 1)(b2 + b+ 1) < 3
( c

2

)( c
2

)
=

3c2

4
< c2 + c+ 1

which is a contradiction.

Lemma 34. Suppose that a and c are distinct odd primes. Assume further that
a2+a+1

3 is prime and that a2+a+1
3 |(c2 + c + 1). Then either a2 + a + 1 < 3

4c or

c = a2+a+1
3 − (a+ 1).

Proof. Suppose that a and c are distinct odd primes. Assume further that a2+a+1
3

is prime and that a2+a+1
3 |(c2 +c+1). Set p = a2+a+1

3 . Consider possible t such that

t2 + t+ 1 ≡ 0 (mod p). Mod p, there are two residue classes which are solutions, t1
and t2. If t1 is the smaller solution, then they are related by t2 = p− t1 − 1. Thus,

we must have t2 >
p
2 . We cannot have a ≡ t2 because then we would have

a2 + a+ 1 >
(p

2

)2

=

(
a2 + a+ 1

3

)2

>
a4

9
.

This is a contradiction since we must have a ≥ 7, and so a2+a+1 > a4

9 is impossible.

Thus, a must be the smallest positive integer such that t2 + t+ 1 ≡ 0 (mod p).

Now, consider two cases, where c ≡ a (mod p) or where c 6≡ a (mod p). In the

first case, c ≡ a (mod p), we cannot have c = a by assumption, and a + p is even,

so we cannot have c = a+ p. The next option is c = 2p+ a and thus we must have

c ≥ 2p + a. but p ≡ 1 (mod 3) and a ≡ 1 (mod 3), so 2p + a ≡ 0 (mod 3). Thus,

this is not a valid option for c either. Our next possibility is then that c = 3p+ a,

which is even, and so we then have c ≥ 4p+ a, which implies the desired inequality.

Now, consider if c is in the other residue class. This means that c ≡ a2 ≡ −(a+1)

(mod p). Consider the simplest case, c = p− a− 1. Then

c2 + c+ 1 = (p− (a+ 1))2 + p− (a+ 1) + 1 =
a2 + a+ 1

3
− (a+ 1),

as required by the lemma.

If c 6= p− a− 1, then we may, by the same sort of logic as earlier, rule out other

small values of c. We can rule out c = 2p − a − 1 since this number is even. The

next case is

c = 3p− a− 1 = 3

(
a2 + a+ 1

3

)
− (a+ 1) = a2 − 1 = (a− 1)(a+ 1),
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which is impossible since c is prime. After that, our next possibility is c = 4p−a−1

which is even, so we must have c ≥ 5p−a−1 which implies that c > 4(a2+a+1).

Lemma 35. There are no solutions to x2 + x + 1 = 3(a2 + a + 1) where a, x and

a2 + a+ 1 are all odd primes.

Proof. Assume that x2 +x+ 1 = 3(a2 + a+ 1) where a, x and a2 + a+ 1 are all odd

primes. By Lemma 32, we have a2 + a+ 1 < x
2 . Thus, x > 2(a2 + a+ 1), and hence

3(a2 + a+ 1) = x2 + x+ 1 > x2 > 4(a2 + a+ 1),

which is a contradiction.

Lemma 36. There are no solutions to x2 + x+ 1 = (a2 + a+ 1)(b2 + b+ 1) where

x, a, b, a2 + a+ 1, and b2 + b+ 1 are all odd primes.

Proof. The proof is essentially identical to that for Lemma 33.

Lemma 37. There are no solutions to x2 + x+ 1 = (a2 + a+ 1)( b
2+b+1

3 ) where x,

a, b, a2 + a+ 1 and b2+b+1
3 are all odd primes.

Proof. Assume that x2 + x+ 1 = (a2 + a+ 1)( b
2+b+1

3 ) where x, a, b, a2 + a+ 1 and
b2+b+1

3 are all odd primes. Then

3(x2 + x+ 1) = (a2 + a+ 1)(b2 + b+ 1).

Since a2 +a+1 is a prime greater than 3 we have (a2 +a+1)|(x2 +x+1). Note that

we also have that (3, x2 +x+ 1) = 1 and hence we may apply the second inequality

from Lemma 32, to conclude that

a2 + a+ 1 <
2

9
x. (25)

We may also apply Lemma 34, to get either x = b2+b+1
3 − (b+ 1) or b2 + b+ 1 < 3

4x.

The second of these would immediately lead to a contradiction with Inequality (25),

so we may assume that x = b2+b+1
3 − (b+ 1). Therefore,

x2 + x+ 1 =

(
b2 − 5b+ 7

3

)(
b2 + b+ 1

3

)
.

We then must have b2−5b+7
3 = a2 + a+ 1, and that forces that

x =
b2 + b+ 1

3
− (b+ 1) =

b2 − 5b+ 7

3
+ b− 3 = a2 + a+ 1 + b− 3.

This contradicts Inequality (25), and so we have our final contradiction.
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Lemma 38. There are no solutions to x2 + x+ 1 = (a
2+a+1

3 )( b
2+b+1

3 ) where x, a,

b, a
2+a+1

3 and b2+b+1
3 are all odd primes.

Proof. Assume we have x2 + x + 1 = (a
2+a+1

3 )( b
2+b+1

3 ) where x, a, b, a2+a+1
3 and

b2+b+1
3 are all odd primes. Note that we cannot have a = b since x2 + x+ 1 cannot

be a perfect square.

We now invoke Lemma 34. We have four cases depending on which of the prongs

of Lemma 34 is active for a and b. In Case I, we have a2 + a + 1 < 3
4x and

b2+b+1 < 3
4x. In Case II, we have we have x = a2+a+1

3 −(a+1) and b2+b+1 < 3
4x.

In Case III, we have a2 + a+ 1 < 3
4x and x = b2+b+1

3 − (b+ 1). Finally, in Case IV,

we have x = a2+a+1
3 − (a+ 1) and x = b2+b+1

3 − (b+ 1).

Case I. We obtain a contradiction since we have

x2 + x+ 1 =

(
a2 + a+ 1

3

)(
b2 + b+ 1

3

)
<
(x

4

)
.

Cases II and III are essentially identical so we will only discuss Case II. We have

x = a2+a+1
3 − (a + 1) and b2 + b + 1 < 3

4x. Substituting in our equation for x in

terms of a we obtain,

x2 + x+ 1 =

(
a2 − 5a+ 7

3

)(
a2 + a+ 1

3

)
.

We then have that b2 + b + 1 = a2 − 5a + 7. We can rewrite this equation to get

that

(2− a− b) (a− b− 3) = 0,

but that is impossible to satisfy since a and b are both odd primes.

We then finally have Case IV, where x = a2+a+1
3 −(a+1) and x = b2+b+1

3 −(b+1).

We thus have
a2 + a+ 1

3
− (a+ 1) =

b2 + b+ 1

3
− (b+ 1)

which implies that either a = b (which we have already ruled out), or that a+ b = 2

which is impossible for primes a and b.

3. 3 Divides N

We will in this section set f3 to be the number such that 3f3 ||N . We define S and

T by

S =
∏

p||m,p 6=3

p
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and

T =
∏

p2|m,p6=3

p.

We will set S = S1S2S3S4 where a prime p appears in Si for 1 ≤ i ≤ 3 if σ(p2) is

a product of i primes; S4 will contain all the primes of S where σ(p2) has at least

4 prime factors. We will write s = ω(S) and write t = ω(T ). We define s1, s2, s3,

and s4 similarly. We will write Si,j to be the primes from Si which are congruent j

modulo 3. In a similar way to use lowercase letters to denote the number of primes

in each term as before and in general will use a lowercase letter to denote the number

of distinct primes dividing an upper case letter. For example, we set si,j = ω(Si,j)

and will note that s1,1 = 0. Thus, we do not need to concern ourselves with this

split for S1 since all primes in S1 are congruent to 2 modulo 3, there is no need

to split S1 further. We will abuse notation slightly and will treat capital letters as

both products of distinct primes and as sets containing those distinct primes. Thus,

we may also think of lowercase letters as denoting the number of elements in the

set formed by an upper case letter.

We have the special exponent is at least 1. That is,

1 ≤ e (26)

We have the following straightforward equations from breaking down the defini-

tions of s1, s2, s3 and s4.

s = s1 + s2 + s3 + s4. (27)

Similarly, we have

s2 = s2,1 + s2,2, (28)

s3 = s3,1 + s3,2, (29)

and

s4 = s4,1 + s4,2. (30)

We define f4 as the number of prime divisors (counting multiplicity) in N which

are not the special prime and are raised to at least the fourth power. From simple

counting we obtain

e+ f3 + 2s+ f4 ≤ Ω. (31)

Due to Lemma 33, any element of S3,1 must contribute at least one non-3 prime

which is not from S1. Motivated by Lemma 33, we will define S3,1,T to be the set

of elements of S3,1 which contribute two prime factors in T or e, and define S3,1,S ,

as those which contribute two prime factors in S. We will similarly define S3,1,ST

as those which contribute one to S and one which goes to T or e. We will similarly
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define S1,T as the set of elements of S1 which contribute to T and define S1,S as the

set of elements of S1 which contribute to S. Define S1,e as the set of elements of

S1 which contribute the special prime. We will correspondingly define s3,1,T , s3,1,S ,

s3,1,ST s1,T , s1,S , and s1,e. We of course have have s1,e ≤ 1 but we will not need

this here. We then have

s3,1 ≤ s3,1,T + s3,1,S + s3,1,ST . (32)

We then define S3,1,S̄T as the set of elements of S3,1,ST which have their S con-

tributing term not arising from an S1. Similarly define S3,1,ST̄ as the set of elements

of S3,1,ST which have their T term not arising from an S1. We define as usual their

lowercase variables for counting the number of elements in each set. From Lemma

33, we have that

S3,1,ST = S3,1,S̄T ∪ S3,1,ST̄ .

Thus, we have

s3,1,ST ≤ s3,1,S̄T + s3,1,ST̄ . (33)

We also have

s1 ≤ s1,T + s1,S + s1,e. (34)

Lemma 39. We have

s1 + s2,2 ≤ t+ s2,1 + s3,1 + s4,1 + 1. (35)

Proof. The proof of this lemma is essentially the same as that of Lemma 4 from

[23].

Next we have

s2,1 + s3,1 + s4,1 ≤ f3, (36)

since if x ≡ 1 (mod 3), then x2 + x+ 1 ≡ 0 (mod 3).

We also have by counting all the 1 (mod 3) primes which are contributed by

primes in S

s1 + 2s2,2 + 3s3,2 + s2,1 + 2s3,1 + 4s3,2 + 3s3,1 ≤ f4 + e+ 2s2,1 + 2s3,1 + 2s4,1.

This simplifies to

s1 + 2s2,2 + 3s3,2 + 4s4,2 + s4,1 ≤ f4 + e+ s2,1. (37)

And we of course have

4t ≤ f4. (38)
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We may split S2,2 into four sets, S2,2,S ,S2,2,T ,S2,2,ST , and S2,2,e. We define S2,2,e

as the set of elements of S2,2 which contribute to the special prime at least once.

We define S2,2,S as the set of elements of S2,2 where both contribute to S, S2,2,T

as the set of elements of S2,2 where both contribute to T , and S2,2,ST as the set of

elements of S2,2 where one contributes to S and one contributes to T . We define

their lowercase variables as usual. We have

s2,2 ≤ s2,2,S + s2,2,T + s2,2,ST + s2,2,e. (39)

We may split S2,1 in a similar way into and S2,1,S , S2,1,T , and S2,1,e. We define

the lowercase variables as usual. We have

s2,1 ≤ s2,1,S + s2,1,T + s2,1,e. (40)

We have

s1,e + s2,1,e + 2s2,2,e ≤ e. (41)

We have

s1 ≤ s1,S + s1,T + s1,e. (42)

From Lemma 35, Lemma 36, Lemma 37 and Lemma 38, we get that every element

of S2,2 must contribute at least one prime which does not arise from either an

element of S1 or an element of S2,1. Similarly, every element of S2,2,ST must have

either a contribution to T or e which does arise from an S2,1 or S1 element or must

have a contribution to S which does not arise from an S2,1 or an S1 element. We

will set S2,2,S∗T as set of those elements which contribute an S element of this form,

and S2,2,ST∗ as the set of those elements which contribute a T term. We define the

lower-case counting variables as usual. We then have

S2,2,ST ≤ S2,2,S∗T + S2,2,ST∗. (43)

We also have

2s1,S + 2s2,1,S + s2,2,S + S2,2,S∗T + s3,1,S + s3,1,S̄T ≤ 2s2,1 + 2s3,1 + 2s4,1 (44)

and

4s1,T + 4s2,1,T + s2,2,T + s2,2,ST∗ + s3,1,T + s3,1,ST̄ ≤ f4 + e. (45)

We have from counting the primes from S which are contributed by S

s1,S + s2,1,S + 2s2,2,S + 2s3,1,S + s3,1,ST ≤ 2s2,1 + 2s3,1 + 2s4,1. (46)

We have that

s+ t+ 2 = ω. (47)

Note that the +2 in Equation (47) arises from 3 and the special prime.
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To prove the result we add up our inequalities as follows. We take

9

25
(26)+

16

25
(27)+

16

25
(28)+

16

25
(29)+

16

25
(30)+1(31)+

2

25
(32)+

1

25
(33)+

8

25
(34)

+
2

25
(35)+1(36)+

6

25
(37)+

17

25
(38)+

2

25
(39)+

8

25
(40)+

8

25
(41)+

1

25
(43)+

7

50
(44)

+
2

25
(45) +

1

25
(46) +

66

25
(47),

which yields the desired inequality.

4. 3 Does Not Divide N

For simplicity, we will prove the slightly weaker bound that

302

113
ω − 641

113
≤ Ω (48)

and then discuss the changes needed to improve the constant term. We set m =

5
f5
2 11

f11
2 S2T 4U ′. Here we have

S =
∏

p,p||m,p6∈{5,11}

p, T =
∏

p,p2||m,p 6∈{5,11}

p.

We have U ′ = m

5
f5
2 11

f11
2 S2T 4

and U = rad(U ′). That is,

U =
∏

p,p3|m,p 6∈{5,11}

p.

In other words, S contains the prime divisors other than 5 and 11 which are raised

to exactly the second power in the factorization of N . Similarly, T contains the

prime divisors other than 5 and 11 which are raised to exactly the fourth power in

the factorization of N . Finally, U contains the prime divisors which are raised to

at least the sixth power in the factorization of N and are not 5, and 11, and the

special prime. We set s = ω(S), t = ω(T ) and u = ω(U).

We then have

ω ≤ s+ t+ u− 3. (49)

We similarly define f6 as the set of primes (counting multiplicity) that appear to

at least the 6th power. We then have

6u ≤ f6 (50)

and

e+ f5 + 2s+ 4t+ f6 + f11 ≤ Ω. (51)
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We do not have an equality in Equation (50) because there may be an element of

u raised to a power higher than 6. We will define ST to be the set of elements of S

which arise from T , that is,

ST =
∏

p|S,p|σ(T 4)

p.

Similarly, we will define TS to be the set of elements of T which arise from S:

TS =
∏

p|T,p|σ(S2)

p.

We note that any prime in ST must be congruent to 1 modulo 5 or must be 5 itself.

We will define SM as the primes in S which are congruent to 1 modulo 5, and set

sM5 = ω(SM5). We will set S = S1S2S3S4S5 similarly to how we did in the case

when 3 | N , with p|S5 if σ(p2) has 5 or more not necessarily distinct prime factors,

and similarly define s1, s2, s3, s4 and s5. We then define SM1, SM2 · · ·SM5 as the

intersections of the corresponding Si and SM , and then define sM1, sM2 · · · sM5

accordingly. We have

s ≤ s1 + s2 + s3 + s4 + s5. (52)

We have

sM ≤ sM1 + sM2 + sM3 + sM4 + sM5. (53)

We have that each of the si is at least sMi and thus we have

sM2 ≤ s2, (54)

sM3 ≤ s3, (55)

sM1 ≤ s4, (56)

and

sM5 ≤ s5. (57)

Define TS to be the set of elements of T which are contributed by S, and define

tS as the lowercase variable as usual. Note that every element of TS is congruent

to 1 modulo 3. We note that

tS ≤ t. (58)

We note that any prime factor contributed by S cannot itself be in S. To see why,

note that any prime p contributed by S is congruent to 1 modulo 3, and in that case

3|σ(p2). This contradicts the assumption in this section that 3 - N . We have from

Lemma 31, that every element of S3M must either have all contributions be terms

which do not arise from an S1M or must contribute a term which does not arise

from an S1 at all. We will set S3MA as the set of elements of S3N which contribute

all terms not arising from S1M . We will set S3MB as the set of elements of S3M
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which do not contribute at least one term which does not arise from S1. We define

the lowercase counting variables as usual. We then have

s3M ≤ s3MA + s3MB . (59)

We then have

4s1,m + 3s3MA + s3MB + s2 − 3 ≤ 4tS + uS + eS . (60)

Similarly we have

4s1 + s3MB + s2 − 3 ≤ 4tS + uS + se. (61)

We also have by the same logic as Lemma 4 from [23] that

s1 + s2 ≤ tS + uS + 1. (62)

We also have from counting all the various si contributions that

s1 + 2s2 + 3s3 + 4s4 + 5s5 ≤ 4tS + uS + eS . (63)

We now turn to the equations which allow us to bound the number of primes in

SM . To do this we need lower bounds on the contribution to S from elements in

T . We define TS1, TS2, TS3, TS4 and TS5 as follows: for 1 ≤ i ≤ 4 we define TSi to

be the set of elements of TS which contribute exactly i primes, and we define TS5

to be the set of those elements of TS which contribute at least 5 primes. We define

TM to be the set of elements of T which are congruent to 1 modulo 5. Note that

tS ≤ tS1 + tS2 + tS3 + tS4 + tS5. (64)

We have

tS1 + 2tS2 + 3tS3 + 4tS4 + 5tS5 ≤ 2sM + 4tM + uT + eT + f5 + f11 (65)

where ut and et are defined analogously to us and es.

We note that every element in TS is congruent to 1 modulo 3, and that if x ≡ 1

(mod 3), we have that x4 + x3 + x2 + x + 1 ≡ 2 (mod 3). But every element

contributed by a prime in S must be congruent to 1 modulo 3. So if p ∈ TS then

σ(p4) ≡ 2 (mod 3). Thus, any element of Ti,S when i is odd must contribute at

least one prime which is congruent to 1 modulo 3 (and hence contribute a prime

not in S), since a product of an even number of numbers all congruent to 2 modulo

3 will be congruent to 1 modulo 3. Thus we have,

tS2 + tS4 ≤ 4tM + ut + et. (66)

The next set of inequalities seeks to deal with the problem that we may have very

large TS1. From Lemma 6, it follows that no element of TS1 can give rise to an
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element of S1. For i with 2 ≤ i ≤ 5 Define Si∗ as the elements of Si arising from

T1S . We define the lowercase counting variables as usual. We then have

tS1 ≤ s2∗ + s3∗ + s4∗ + s5∗ + tM + ut + et. (67)

We have

s4∗ ≤ s4, (68)

and

s5∗ ≤ s5. (69)

We have from Lemma 4 and Lemma 5, that

s1 + s3∗ − 1 ≤ tS + u. (70)

We have from counting our contribution to the special prime that

eS + eT ≤ e. (71)

We also have

uS + uT ≤ f6. (72)

We note that since every element in TM is 1 modulo 5, we have

tm ≤ f5. (73)

We also have by Lemma 6, that any contribution from S2∗ which contributes both

terms to T must also contribute to f11. We set S2∗T to be the set of those elements

of S2∗ which contribute both terms to T , and we set S2∗UE to be those which

contribute at least one term to either u or e. We then have,

s2∗ ≤ s2∗T + s2∗UE , (74)

s2∗T ≤ f11, (75)

and

s2∗UE ≤ u− 1. (76)

We have as before that the special prime must be raised to at least the first power

and thus,

1 ≤ e. (77)

Finally we have that

ω ≤ s+ t+ u+ 3. (78)

The 3 comes from the special prime, the possibility of division by 5 and the possi-

bility of division by 11.
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To prove Inequality (48) we then add our inequalities as follows. We take

302

113
(49) +

53

113
(50) + 1(51) +

76

113
(52) +

8

113
(53) +

8

113
(54) +

2

113
(55)

+
8

113
(56) +

8

113
(57) +

150

113
(58) +

6

113
(59) +

2

113
(60) +

4

113
(61) +

26

113
(62)

+
26

113
(63) +

12

113
(64) +

4

113
(65) +

4

113
(66)

8

113
(67) +

8

113
(68) +

8

113
(69)

+
8

113
(70) +

32

113
(71)

58

113
(72) +

40

113
(73) +

8

113
(74) +

8

113
(75) +

8

113
(76)

+
81

113
(77).

It follows from the results in [4] that if one has any of 52||N , 54||N , 112||N , or 114||N
then one must have at least one prime which is not the special prime raised to at

least the 6th power, and hence have u ≥ 1. We thus may adjust the above equations

slightly: If (N, 55) = 1, we have instead of Equation (49), we have ω = s+ t+u− 1

and f5 = f11 = 0. In this case we get a bound of

302

113
ω − 286

113
≤ Ω. (79)

Alternatively, one must have 56|N or 116|N if either 5|N or 11|N . We can without

too much work check that all of these force a bound at least as tight as Inequality

(79). Thus we always have that bound.

5. Improved Norton Type Results

Norton [14] proved two types of results. First, he proved lower bounds for ω(N) in

terms of the smallest prime factor of N . Second, he proved lower bounds for N in

terms of its smallest prime factor. In this section, we will slightly improve Norton’s

first type of result and show how we can combine that with the Ochem-Rao type

results to substantially improve the second type of result. Set Pn to be the nth

prime number. For n > 1 Norton defined a(n) as the integer such that

n+a(n)−2∏
r=n

Pr
Pr − 1

< 2 <

n+a(n)−1∏
r=n

Pr
Pr − 1

. (80)

It is easy to see that if N is an odd perfect number with smallest prime divisor Pn,

then N must have at least a(n) distinct prime divisors. In fact, although Norton

does not state this explicitly, this statement also applies to any odd abundant

number N . The function a(n) is also closely related to Mertens theorem which

relies on the same product. Thus, study of a(n) is a natural object even if one is

not strongly interested in odd perfect numbers. Norton proved
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Theorem 3. ([14]). Let N be an odd perfect number with smallest prime divisor

Pn, largest prime divisor Ps, and let b be a constant less than 4
7 . Then we have:

1.

a(n) = Li(P 2
n) +O

(
n2e− logb n

)
. (81)

2.

a(n) =
1

2
n2 log n+

1

2
n2 log log n− 3

4
n2 +

n2 log log n

2 log n
+O

(
n2

log n

)
. (82)

3.

Ps ≥ Pn+a(n)−1 = P 2
n +O

(
n2e− logb n

)
. (83)

4.

Ps ≥ Pn+a(n)−1 = n2 log2 n+2n2 log n log log n−2n2 log n+n2(log log)2+O(n2).

(84)

5.

logN > 2P 2
n +O

(
n2e− logb n

)
. (85)

Note that only Equation (85) is using non-trivial material about odd perfect

numbers. The bounds for Ps apply to any odd abundant number, and the bounds for

a(n) do not depend on odd perfect numbers at all. These bounds of Norton are not

by themselves constructive; Norton proved slightly weaker constructive bounds.4.

Theorem 4. ([14]). Let N be an odd perfect number with smallest prime divisor

Pn, and set Ps = Pa(n)−n−1. Then we have

1.

a(n) > n2 − 2n− n+ 1

log n
− 5

4
− 1

2n
− 1

4n log n
. (86)

2. As long as n ≥ 9,

logN > 2Ps

(
1− 1

2 logPs

)
−2Pn

(
1 +

1

2 logPn

)
+6 logPn+2 logPn+1−logPs.

(87)

These bounds are explicit with the cost of being weaker in form than the bounds

in Theorem 3. To prove Equation (86), Norton did have to use results about odd

perfect numbers. In fact, Norton’s method uses some early results ruling out specific

4Prior to Norton a similar non-constructive but more general bound was proven which gives a

lower bound for the ω(n) in terms of α and p where n satisfies
σ(n)
n

≥ α and n has smallest prime
factor p [20].
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forms of odd perfect numbers, although the forms ruled out only allow improvement

in the lower order terms of his inequality. Subsequent results in this section can

be thought of as using similar ideas. Because we have stronger results on what an

odd perfect number can look like, we can actually improve the constant in front of

the lead terms. It is also worth noting that for large values of n, Norton’s explicit

bound for a(n) gives a better result than the often cited bound of Grun [7], which

shows that if N is an odd perfect number with smallest prime divisor p, then

3

2
p− 2 ≤ ω(N). (88)

Norton’s result focus on a(n), but for some purposes it is more natural to look at

the function b(p), defined for odd primes p, where b(p) = a(n) where p = Pn. We

will examine the behavior of both functions in this section. While Norton’s results

in work for abundant or perfect numbers, we will also be interested in how they can

be strengthened for odd perfect numbers. In this context, we will define bo(p) to be

the minimum of the number of distinct prime divisors of any odd perfect number

with smallest prime divisor p. We will set bo(p) =∞ when there are no odd perfect

numbers with smallest prime divisor p. We will define ao(n) in analogous fashion.

Trivially one has bo(p) ≥ b(p) and ao(n) ≥ a(n). One would like to be able to prove

that bo(p) > b(p) but this seems very difficult.

In this section, we will prove strengthened versions of Norton’s constructive re-

sults bounding a(n) from below and a similar one for b(p) although they will still fall

slightly short of the non-constructive results. In the next section, we will use these

results to construct a general framework to use Ochem and Rao type results to get

explicit inequalities similar to Inequality (87) which in general are better than Nor-

ton (both his explicit form and his non-constructive form in Equation (85)). We will

then use this framework and our earlier results to construct a strong lower bound

for the size of an odd perfect number in terms of its smallest prime factor. We will

write S(x) =
∏
p≤x

p
p−1 . We will write ϑ(x) to be Chebyshev’s second function, that

is,

ϑ(x) =
∑
p≤x

log p.

We need the following lemma.

Lemma 40. For any prime p > 2, we have b(p) ≥ p.

Proof. Assume that b(p) = m. Then since x
x−1 is a decreasing function for positive

x and the ith prime after p is at least p+ i, we must have

2 <

(
p

p− 1

)(
p+ 1

p

)(
p+ 2

p+ 1

)
· · ·
(
p+ b(p)− 1

p+ b(p)− 2

)
=
p+ b(p)− 1

p− 1
.

Thus

2p− 2 < p+ b(p)− 1,
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and so b(p) > p− 1, and so b(p) ≥ p.

Note that variants of the above lemma are very old. Often this result is normally

stated simply that an odd perfect number must have more distinct prime factors

than its smallest prime divisor. The lemma when stated applying just to perfect

numbers seems to date back to Servais [21] and has been proved repeatedly such

as in [17]. In that context, it is worth noting that there is also a slightly stronger

version in the literature which again has been proven a few times. In this case, the

oldest version appears to be due to Grun [7]. As previously discussed, Grun proved

that if N is an odd perfect number with least prime divisor p, then 2
3ω(N) + 2 ≥ p.

Again, the proof can, with no substantial effort, be generalized to a statement about

b(p). In Grun’s proof, the key observation is that odd primes must differ by at least

2, and therefore one can instead use the inequality

2 <

(
p

p− 1

)(
p+ 2

p+ 1

)(
p+ 4

p+ 3

)
· · ·
(
p+ 2b(p)− 2

p+ b(p)− 3

)
,

and then estimate the quantity on the right-hand side. As with the lemma of

Servais, Grun’s lemma applies to any odd perfect number or odd abundant number

although it is normally phrased simply for odd perfect numbers.

We will need a few explicit estimates of certain functions of primes. We have

from [3] that

x

log x

(
1 +

0.992

log x

)
≤ π(x) ≤ x

log x

(
1 +

1.2762

log x

)
, (89)

with the lower bound valid if x ≥ 599 and the upper bound valid for all x > 1. We

also have for n ≥ 2,

Pn ≥ n
(

log n+ log log n− 1 +
32

31(log n)2

)
. (90)

The above bound for Pn follows from the following bound in [3] which differs only

in the last term:

Pn ≥ n
(

log n+ log log n− 1 +
log log x− 9

4

log x

)
. (91)

To obtain Inequality (90), we note that for if n ≥ 35312, we have that

log log n− 9/4

log n
≥ 32

31(log n)2
.

We verify the inequality by direct computation for all n with 2 ≤ n ≤ 35312. We

will write

Pn = n

(
log n+ log log n− 1 +

32

31(log n)2

)
.
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Lemma 41. If A and B are real numbers, with A ≥ B ≥ 6 and they satisfy

A+
1

2A
≥ 2B − 1

B
,

then

A ≥ 2B − 5

4B
− 1

37B2
.

Proof. Note that A+ 1
2A is a positive increasing function in A. Hence, to prove this

one simply needs to verify that if B ≥ 6, then

2B − 5

4B
− 1

37B2
+

1

2(2B − 5
4B −

1
37B2 )

≤ 2B − 1

B
.

For x > 1 we have [19]

eγ(log x)

(
1− 1

2 log2 x

)
< S(x) < eγ(log x)

(
1 +

1

log2 x

)
(92)

where γ is Euler’s constant. We will write

Q(x, y) =
∏

y<p≤x

p

p− 1
=
S(x)

S(y)

and will assume that x > y. We have from Equation (92) that

log x

log y

(
1− 1

2 log2 x

1 + 1
log2 y

)
< Q(x, y) <

log x

log y

(
1 + 1

log2 x

1− 1
2 log2 y

)
. (93)

Theorem 5. For all n > 1 we have

a(n) ≥ n2

2

(
log n− 3

2
log log n+

1

20
+

log log n

log n

)
− n+ 1.

Proof. We may verify from direct computation that the above inequality is valid

for n ≤ 117, and so we may assume that n ≥ 118 or equivalently that p ≥ 647. Our

plan to estimate a(n) is to set y = Pn in Equation (93), find a lower bound on x

such that Q(x, y) > 2, and then estimate π(x) since we will have a(n) = π(x)−n+1.

We have from Equation (93) that

2 <
log x

log y

(
1 + 1

log2 x

1− 1
2 log2 y

)
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which implies that

log x+
1

2 log x
≥ 2 log y − 1

log y
.

We then have from Lemma 41 that

log x ≥ 2 log y − 5

4 log y
− 1

37(log y)2
. (94)

(In the above use of the Lemma we are setting A = log x and B = log y.) Note that

getting a lower bound a(n) is exactly the same as lower bounding the minimum x,

such that Q(x, pn) > 2, then applying lower bound on π(x)− π(y) = π(x)− n+ 1.

It is not hard to see that Equation (94) yields that as long as y ≥ 541 that

x ≥ y2

(
1− 5

4 log y
+

1

2(log y)2

)
. (95)

We now need to estimate a(n) by estimating π(x) − n + 1. We then have from

Equation (95) and Equation (90), along with the fact that the function j(s) =

1− 5
4s + 1

2s2 is increasing for s ≥ 1/10 that

a(n) ≥ π
(

(Pn)2

(
1− 5

4 logPn
+

1

2(logPn)2

))
− n− 1 (96)

We have the trivial estimate that Pn ≥ n. Way again apply that f(s) is increasing

in s, and substitute in the definition of Pn, and set t = log n to obtain

a(n) ≥ π

(
n2

(
t+ log t− 1 +

32

31t2

)2(
1− 5

4t
+

1

2t2

))
− n− 1. (97)

When t > 4.77, one has that(
t+ log t− 1 +

32

31t2

)2(
1− 5

4t
+

1

4t2

)
≥ t2 − log t

2
.

So for n in the range under discussion we have

a(n) ≥ π
(
n2(t2 − log t

2
)

)
− n+ 1 = π

(
n2((log n)2 − log log n

2
)

)
− n+ 1. (98)

We wish to apply Equation (89) to (98). To do so, we need a lower bound on

1

log
(
n2((log n)2 − log logn

2 )
) .

It is not hard to check that as long as n > ee one has that

1

log
(
n2((log n)2 − log logn

2 )
) ≥ 1

2 log n

(
1− log log n

log n

)
. (99)
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We can now apply Equation (99) to Equation (98) and (89) to get that

a(n) ≥
n2
(
t2 − t log t

2

)(
1− log t

t

)
2t

(
1 + 0.992

(
1

2t
− log t

2t2

))
− n− 1. (100)

We have again in the above for convenience written log n as t. A little work then

shows that for n ≥ 43, we have that the right-hand side of Equation (100) is at

least
n2

2

(
log n− 3

2
log log n+

1

20
+

log log n

log n

)
− n+ 1

which proves the theorem.

Note that the bound given by Theorem 5 is tighter than the bound from Equation

(86). We similarly have an interest in estimating b(p).

Theorem 6. For all primes p > 2, we have

b(p) ≥ p2

2 log p

(
1− 0.754

log p
− 0.745

(log p)2
− 0.247

(log p)3
+

0.631813

(log p)4

)
− π(x) + 1. (101)

and

b(p) ≥ p2

2 log p

(
1− 0.754

log p
− 0.745

(log p)2
− 0.247

(log p)3
+

0.631813

(log p)4

)
− p

log p
(1 +

1.2726

log p
) + 1. (102)

Proof. We will prove only the second of the two inequalities (the proof for the

first statement is nearly identical). The first few steps in this proof are essentially

identical to those in the proof of Theorem 5. We again assume that p ≥ 647, and

proceed until we reach Equation (95). And as before we estimate

π(x)− n+ 1.

We need to lower bound the left-hand side of

b(p) ≥ π
(
p2

(
1− 5

4 log p
+

1

2(log p)2

))
− π(p) + 1. (103)

We need to apply Inequality (89). We note that although the lower bound on

Equation (89) requires that the argument of x be at least 599, we have that in this

case since p ≥ 647. We also need a lower bound estimate for

1

log(p2(1− 5
4 log p + 1

2(log p)2 )
.
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It is not hard to verify that when p in our range we have

1

log(p2(1− 5
4 log p + 1

2(log p)2 )
≥ 1

2 log p

(
1− 5

8(log p)2
− 21

32(log p)3

)
. (104)

We will set t = log p, and then use Equation (104) to apply Equation (89) to (103)

to get that

b(p) ≥ p2

2t

(
1− 5

4t
+

1

2t2

)(
1− 5

8t2
− 21

32t3

)(
1 +

0.992

2t

(
1− 5

8t2
− 21

32t3

))
− p

t
(1 +

1.2726

t
) + 1. (105)

We need then to estimate

I2(t) =

(
1− 5

4t
+

1

2t2

)(
1− 5

8t2
− 21

32t3

)(
1 + 0.992

(
1− 5

8t2
− 21

32t3

))
.

We have

I2 = 1− 0.754

t
− 0.745

t2
− 0.247

t3
+

0.631813

t4
+ E(t)

where

E(t) =
0.369375

t5
− 0.160813

t6
− 0.198109

t7
− 0.0635742

t8
+

0.106805

t9
.

We note that E(t) is positive when t > 1 which is satisfied in our range. Thus we

conclude that

I2(t) ≥ 1− 0.754

t
− 0.745

t2
− 0.247

t3
+

0.631813

t4

which proves the theorem.

Note that although Theorem 6 and Theorem 5 both give the asymptotically

correct values, in practice Theorem 6 is stronger. This is due to Theorem 5 requiring

that we also use a lower bound estimate for Pn in terms of n.

While we cannot directly show that bo(p) > b(p), we can get partial results of

this form. In particular, b(p) = 3, but bo(3) ≥ 10 [13]. Similarly, b(5) = 7, and

bo(5) ≥ 12 [11]. We will also prove a similar result for other small values of b(p)

using the fact that the largest prime divisor of an odd perfect number must be at

least 108 [6].

Proposition 1. We have bo(p) ≥ b(p) + 1, for p ≤ 397.

Proof. We will show the calculation for p = 7. The calculation is nearly identical

for the other primes in question. We note that b(7) = 15. Now, assume N is an odd



INTEGERS 21 (2021) 43

perfect number with smallest prime divisor 7, and with exactly 15 distinct prime

divisors. Then we have

2 =
σ(N)

N
< H(N) ≤ 7

6

11

10

13

12

17

16
· · · 53

52

59

58

108 + 1

108
< 1.994.

This is a contradiction.

This proposition stops at 397 because the relevant product is actually greater

than 2 for the next prime, 401. The result could be extended if the result from

[6] could be extended further; however, extending that result (say to that an odd

perfect number must have a prime divisor which is at least 109) would likely take

either very heavy new computations or would take some fundamental new insight.

That said, it is plausible that a similar result could be proved just for odd perfect

numbers not divisible by any prime less than some bound, and this would allow

one to extend the above proposition in this case. This proposition also allows us to

extend some other results of Norton. For example, it is frequently mentioned that

Norton proved that an odd perfect number not divisible by 3, 5 or 7 must have at

least 27 distinct prime factors. Proposition 1 allows one to replace 27 in that result

with 28.

We also have as a consequence of Theorem 6 the following corollary.

Corollary 3. If p ≥ 11, then b(p) ≥ 2p+ 2.

Using Proposition 1, Corollary 3 and the earlier remarks for p = 3 and p = 5, we

can combine this with Theorem 6 to obtain with a little work a result specifically

about odd perfect numbers.

Corollary 4. Let N be an odd perfect number with smallest prime factor p. Then

we have ω(N) ≥ 2p+ 2.

Proof. The result is essentially just Corollary 3 except for p = 3, 5, 7. We may deal

with p = 3 by recalling that an odd perfect number must have at least 10 distinct

prime factors and 10 ≥ 2(3) + 2. Since an odd perfect number not divisible by 3

must have at least 12 prime factors, 5 is likewise handled. Since b(7) = 15, we have

that bo(7) ≥ 16 by Proposition 1. And so the result is proven.

Note that Corollary 4 is tighter than Grun’s result for all odd primes p. One can

see from examples like 945 that this bound really does require that N is an odd

perfect number, unlike Grun’s bound which applies also to odd abundant numbers.

It is easy to see from the definition of a(n) that a(n + 1) ≥ a(n) for all n ≥
2. However, Norton’s bounds do not appear by themselves to be tight enough to

conclude that a(n + 1) > a(n) for all n ≥ 2. But we can use Corollary 3 to prove

this result.
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Proposition 2. For all n ≥ 2, a(n+ 1) ≥ a(n) + 1. Equivalently, if Pn is an odd

prime and Pn+1 is the next prime after Pn, then b(Pn+1) ≥ b(Pn) + 1.

Proof. We can verify that the statement is true for any prime p ≤ 17, so we may

without loss of generality assume that Pn+1 > Pn ≥ 19. Assume that b(Pn) =

b(Pn+1) = m. This means we have that

n+m−2∏
r=n

Pr
Pr − 1

< 2 <

n+m−1∏
r=n

Pr
Pr − 1

. (106)

and
n+m−1∏
r=n+1

Pr
Pr − 1

< 2 <

n+m∏
r=n+1

Pr
Pr − 1

. (107)

We then have

n+m∏
r=n+1

Pr
Pr − 1

=

(
n+m−2∏
r=n

Pr
Pr − 1

)(
Pn − 1

Pn

)(
Pn+m−1

Pn+m−1 − 1

)(
Pn+m

Pn+m−1 − 1

)
.

(108)

However, we have from Equation (106) that the first term on the right-hand side of

Equation (108) is less than 2. We claim that the remaining terms are less than 1,

which would mean that the right-hand side of Equation (107) would be both greater

than 2 and less than 2 which is a contradiction. It just remains to show that(
Pn − 1

Pn

)(
Pn+m−1

Pn+m−1 − 1

)(
Pn+m

Pn+m−1 − 1

)
< 1.

We note that b(Pn) ≥ 2Pn + 2, and thus Pn+m−1 ≥ 2Pn + 1. We then have

Pn+m ≥ 2Pn + 3. Thus we have that(
Pn − 1

Pn

)(
Pn+m−1

Pn+m−1 − 1

)(
Pn+m

Pn+m−1 − 1

)
≤
(
x− 1

x

)(
2x+ 1

2x

)(
2x+ 3

2x+ 2

)
,

where Pn = x. However, we have that(
x− 1

x

)(
2x+ 1

2x

)(
2x+ 3

2x+ 2

)
=

4x3 + 4x2 − 5x− 3

4x3 + 4x2
< 1.

This completes the proof.

In a similar vein, one can easily modify the above proof to obtain a slightly more

general result.

Proposition 3. For any constant c there are only finitely many n where

a(n+ 1)− a(n) ≤ c.
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We have just shown that a(n) is strictly increasing in n. This is the same as say-

ing that the first difference, a(n+1)−a(n), is always positive. One might naturally

wonder about the behavior of the second differences of a(n). Since a(n) asymptoti-

cally behaves like 1
2n

2 log n which has positive and indeed slightly increasing second

differences, one might hope that a(n) at least has always positive second differences.

Alas, this is not the case. Let f(n) be the second difference of a(n), that is,

f(n) = a(n+ 1) + a(n− 1)− 2a(n).

Generally, f(n) is positive. However, f(31) = −5, and f(100) = −144. What is

going on here? The key issue appears to be that both of these values correspond to

primes which occur right after a large gap. We say that a prime Pn occurs after a

record setting gap if Pn − Pn−1 is larger than it is for any other choice of smaller

n. In particular, the 30th prime is 113, and then there is a record-setting gap to

the 31st prime of 127. Similarly, the 99th prime is 523 and then there is a record

setting gap to the 100th prime of 541. This should not be surprising. Because there

are unusual gaps here, a(30) and a(99) need to be extra large since the relevant

products lack any smallish primes other than P30 and P99. (Remember that the

smaller a prime the more it contributes to our product.) We can check this intuition

by looking at when f(n) = 1 and noting the two smallest examples of this occur

at n = 10, corresponding to the record setting gap between 23 and 29, and at

n = 25, corresponding to the record setting gap between 83 and 89. Note that we

can have f(n) = 1 when the gap is not a record setting gap, such as at n = 35,

which corresponds to the large but not record setting gap between 139 and 149.

This discussion leads to four questions about the behavior of f(n) and one about

a(n+ 1)− a(n).

1. Are there infinitely many values of n where f(n) is negative?

2. Is the set of n where f(n) < 0 a subset of those n where Pn is after a record

setting gap?

3. Are there infinitely many n where Pn occurs at a record setting gaps and f(n)

is positive?

4. Does f(n) take on every integer value? In particular, is f(n) ever zero?

5. Does a(n+ 1)− a(n) take on every positive integer value?

6. Hybrid Bounds

We wish to combine the Norton type results together with the Ochem-Rao type

results to get a strong lower bound on the size of an odd perfect number in terms

of its smallest prime factor. We will write b2(p) = b(p) + π(p)− 1.
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Let S be a set of odd primes. We say N is an S-avoiding OPN if N is an odd

perfect number not divisible by any prime in S. (Here OPN arises from “Òdd Perfect

Number.”) Notice in particular that if the smallest prime factor of N is p, then N is

an S-avoiding OPN with S the set of odd primes strictly less than p. Given S a set

of primes (possibly empty), and α, and β to be real numbers, we will write OR(α,

β, S) for the statement “For any S-avoiding OPN, we have Ω(N) ≥ αω(N)+β.” In

this framework, Ochem and Rao’s original result of Inequality (1) is the statement

OR( 18
7 , −31

7 , ∅). Similarly, Inequalities (3) and (4) can be stated as OR( 8
3 ,−7

3 , {3})
and OR( 21

8 , −39
8 , ∅). Theorem 2 can be stated OR( 302

113 ,−286
113 ,{3}) and OR( 66

25 ,−5,∅).

Theorem 7. Let S be a finite set of odd primes. Let α and β be real numbers

with α > 2. Let M be the maximum of S. Assume that p > M . Let N be an odd

perfect number with smallest prime factor p, and also satisfying αω(N) + β ≥ 0.

Set Q = Pn+b(p)−1. Then we have,

logN ≥ (log p) ((α− 2)(b(p))− β + 1) + 2(ϑ(Q)− ϑ(p))− logQ.

Proof. Assume as given and note that every prime factor of an odd perfect number

except possibly the special prime must be raised to at least the second power. This

contributes the 2(ϑ(P )− ϑ(p))− logQ term (where in the worst case scenario Q is

the special prime). However, we have an additional contribution of the remaining

primes which are forced by our lower bound for Ω(N). Each of those primes is at

least p, and there are at least ((α−2)ω(N)+β+1 such primes (with the +1 coming

from our special prime only being raised to the first power rather than the second).

This gives us the other term above.

We will need the following result from [19]:

x

(
1− 1

2 log x

)
< ϑ(x) < x

(
1 +

1

2 log x

)
. (109)

Here ϑ(x) is Chebyshev’s second function, that is, ϑ(x) =
∑
p≤x log p, and the upper

bound is valid for x > 563 and the lower bound is valid for x > 1. We have the

following as an immediate corollary of Equation (101).

Corollary 5. Let N be an odd perfect number with smallest prime factor p. Then

we have

b2(p) ≥ p2

2 log p

(
1− 0.754

log p
− 0.745

(log p)2
− 0.247

(log p)3
+

0.631813

(log p)4

)
. (110)

We can use this sort of result to get results stronger than Norton’s lower bounds

for logN in Inequality (85) and Inequality (87). We have, using our previous bounds

and a little algebra, the following lemma.
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Lemma 42. Let p be an odd prime greater than 3. Set t = log p. Then we have

Pb2(p) ≥ p2I3(t) (111)

where

I3(t) = 1− 0.754

t
− 2.5 log t

t2
− 1.808

t2
− 0.55 log t

t3
+

0.41(log t)2

t4
+

0.2 log t

t4
+

3.6

t4
. (112)

We can use Lemma 7 and Lemma 42 with our bound for b(p) from Theorem 6 as

well as the statement OR( 8
3 , 7

3 , {3}) and Ochem and Rao’s bound that N > 101500

to obtain a new lower bound for an odd perfect number in terms of its smallest

prime factor.

Theorem 8. Let N be an odd perfect number with smallest prime divisor p. Then

we have that

logN ≥ p2

(
7

3
− 2.51

t
− 2.5 log t

t2
− 1.31

t2
− 3.2 log t

t3
− 4.1 log t

t4

)
. (113)

Note that we have used OR(8
3 , 7

3 , {3}) rather than our new bound since our main

theorem is not better until ω ≥ 34. One can derive a similar result, using the main

theorem of this paper which will be weaker when N is divisible by a small prime p.

7. On the Strength of Restrictions About an Odd Perfect Number

At this point, there are many different bounds on odd perfect numbers. These

include bounds on the size of the odd perfect number in terms of its number of

prime factors, bounds on the size of the largest prime factor, bounds on the size

of the smallest component and bounds on the size of N itself. For a given set of

positive integers A, we will write A(x) to be the number of elements in A which are

at most x. Let E be the set of numbers of Euler’s form for an odd perfect number.

That is, n ∈ E if n = pam2 where p is prime, p ≡ a ≡ 1 (mod 4), and (p,m) = 1.

Let P be a given property of a positive integer. We will write EP to be the set of

elements of E satisfying P . We will say that P is a strong property if the density

of EP in E is 0, that is,

lim
x→∞

EP (x)

E(x)
= 0.

We will similarly say that P is a weak property if

lim
x→∞

EP (x)

E(x)
= 1.

Note for example that for any constant k, all of the following are weak properties:
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• “A number must be at least k.”

• “A number must have a prime factor at least k.”

• “A number must have a component at least k.”

• “A number must have at least k distinct primes factors.”

• “A number must have at least k total prime factors.”

Any finite set of weak properties cannot prove that no odd perfect numbers exist.

However, Ochem and Rao’s inequality is in fact a strong property. Define

ORα,β(n) to be the sentence “Ω(n) ≥ αω(n) + β.” It is a not difficult consequence

of Theorem 430 in [8] to show the following theorem.

Theorem 9. Let α and β be real numbers. Assume that α > 2. Then ORα,β is a

strong property.

We will say that a property P is substantially stronger than property Q if two

conditions hold:

1. Every element of E which is satisfied by P is satisfied by Q.

2. The set EP has density zero in the set EQ. That is,

lim
x→∞

EP (x)

EQ(x)
= 0.

We then strongly suspect that the following is true.

Conjecture 1. Let α1, α2, β1, β2 be real numbers with α1 > α2 > 2. Then ORα1,β1

is substantially stronger than ORα2,β2
.

Of course, any result of the form “For any odd perfect number N , N must satisfy

ORα,β” cannot by itself resolve the fundamental open question, but we suspect that

the strength of Ochem and Rao’s result in the sense above is a sign that this is a

potentially fruitful direction for further research. We note that something being a

strong property does not always line up with our intuition about what should be a

“strong” property in a general sense. For example, let f(x) be a function which is

increasing for sufficiently large x and satisfying

lim
x→∞

f(x) =∞.

It is not hard to show that the property Pf given by the sentence “For all n, n has

a prime factor which is smaller than f(n)” is always a weak property. But if one

could show that an odd perfect number had to have prime factor always less than

log log log log n, that would certainly be noteworthy!
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8. Future Work and Related Problems

One major direction for improving these results is to prove there are no triple

threats. Proving there are no triple threats would result in substantial tightening

of both the bounds for the case when 3 | N and for the case when 3 - N . Another

natural object of study in this context would be what we call an n-obstruction.

Define an n-obstruction to be a set of primes all greater than 3 ai, bi, ci for

1 ≤ i ≤ n and p an odd prime, satisfying for all 1 ≤ i ≤ n

1. σ(a2
i ) = pσ(b2i )σ(c2i )

2. σ(b2i ) and σ(c2i ) prime.

3. The ai are all distinct.

If we can show that a 4-obstruction does not exist, possibly with some very small

modulo restrictions we will get a substantially tighter bound. Similarly, if we can

rule out 3-obstructions or even a 2-obstruction we would get much tighter bounds

(although we suspect that ruling out a 2 is not really doable). Note that at present

we cannot even show the following statement which looks like it should be obviously

true.

Conjecture 2. There exists some n such there is no odd perfect number N with

an n-obstruction ai, bi, ci and satisfying a2
i ||N , b2i ||N and c2i ||N .

Of course, as we improve the linear term in the bounds, the general price paid is

that we are subtracting more in the constant term. Thus, in the original Ochem and

Rao paper, they had a constant of −31/7, and in the subsequent paper we had as

worst case constant −39/8. One of the original goals of Ochem and Rao’s original

Inequality (1) was to assist in the proving of Inequality (2), and there is interest in

proving inequalities of the form

Ω(N) ≥ 2ω(n) + C (114)

where C is reasonably large. At present, the best such inequality is that by Ochem

and Rao where C = 51.

Inequalities of that form require extensive computation. One needs to check many

cases with branching in essentially the standard approach to heavy computations

to bound odd perfect numbers. However, Ochem and Rao had as one of their

conditions to terminate a branch that Equation (1) forced Equation (2). Obviously,

that sort of termination will be more common when one has not just a stronger

linear term but a stronger constant term. Using the inequalities from this paper to

prove inequalities for the form of Inequality (114) would be easier with less negative

constants. For specific small values of ω our inequalities will already give slightly

better bounds than used here, but other approaches might improve the constants.
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One might hope to use the results of Nielsen which bound the actual size of an

odd perfect number N in terms of ω. We present here an approach that is too weak

to be useful by itself but might be productive with more work. We will restrict

this discussion under the assumption where we have both 5|N and 11|N where this

approach is most likely to work. Assume further that we have ω = 10 which is the

smallest possible value of ω not yet ruled out. Note that if 5|σ(11f11) or 11|σ(5f5),

then we can already improve our constant term that way, so we will assume that

neither of those occurs. In that case we have

(5f5)2(11f11)2 < (5f5)σ(5f5)11f11σ(11f11) ≤ N. (115)

Nielsen [13] has proved that if N is an odd perfect number with k distinct prime

factors and largest prime divisor P , then

1012P 2N < 2(4k). (116)

Combining Equation (115) with Nielsen’s upper bound (116), as well as the fact

that the largest prime factor of an odd perfect number must be at least 108 by [6]

we get that

(5f5)2(11f11)21028 < 2(410) (117)

which when we take logarithms simplifies to

(2 log2 5)f5 + (2 log2 11)f11 + 28 log2 10 < 410 (118)

which is a linear inequality restricting f5 and f11 but it is much too weak to give a

useful restriction for improving the constant.

There appear to be four possible approaches to improving this inequality. The

first approach is that one could improve the size of the largest prime factor of an odd

perfect number. This is a project that should be undertaken in general since it has

been about a decade since the last substantial improvement on this has occurred;

more recent algorithmic improvements and computational power may make this a

reasonable step. Unfortunately, it is unlikely that such improvement by itself would

substantially improve Inequality (117) since the restriction involves the logarithm

of the largest prime divisor. The second approach is to improve the size of the

largest prime divisor, restricted to some specific range of ω. It seems very likely

that with the additional assumption that ω = 10 or even something like ω ≤ 15,

that one can substantially improve on the lower bound for the largest prime factor.

The third possibility is to use Nielsen’s general machinery which he used to prove

Equation (116) to incorporate specific prime powers. The fourth possibility is to

improve the second inequality in Equation (115) by making precise the intuition

that there should be a large part of N which is not included in σ(5f5)σ(11f11). This

last looks to be the most promising. However, given how weak Equation (117) is, it

will likely require multiple of these approaches for it to be at all productive. Even
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if one improves it enough to be useful for small values of ω, it will still be likely

too weak to be useful for even slightly larger values of ω. Luckily, all four of these

approaches would be of general interest to understanding odd perfect numbers. A

slightly different approach to Nielsen’s bound may also be valid. Again restricting

to the situation where 5|N and 11|N , we have

5f511f1172s74t76uqe < N (119)

and then proceed as before. This inequality is also still too weak to be directly

useful by itself but may be combined with bounds on the size of q.

A major part of our improvement in the case when 3 - N depended on a specific

coincidental factorization of a specific composition of cyclotomic polynomials. Fur-

ther understanding of such compositions may be relevant for further understanding

of odd perfect numbers. These questions about cyclotomic polynomials may be of

interest independent of anything involving perfect numbers. We have a conjecture

that essentially says that we cannot often get so lucky that we frequently have such

factorizations. In particular, we have,

Conjecture 3. Let p and q be distinct odd primes and let Φp(x) and Φq(x) be the

pth and qth cyclotomic polynomials. Then at least one of Φp(Φq(x)) or Φq(Φp(x))

is irreducible.

We also suspect that, in some suitable sense, such compositions being reducible

should occur on a set of density zero. In particular, call an ordered pair of positive

integers (m,n) to be a good pair if Φm(Φn(x)) factors over the integers where Φm
and Φn are the mth and nth cyclotomic polynomials. Then we strongly suspect

that good pairs are rare in the following sense.

Conjecture 4. Let D(t) count the number of good pairs with both m ≤ t and

n ≤ t. Then we have

lim
t→∞

D(t)

t2
= 0.

Moreover, we have the following even stricter version: let f(t) and g(t) be strictly

increasing functions which go to infinity as t goes to infinity, and let Df,g(t) count

the number of good pairs with m ≤ f(t) and n ≤ g(t). Note that in particular

D(t) = Dt,t(t). Then we have the following stronger conjecture.

Conjecture 5. For any such f(t) and g(t) we have

lim
t→∞

Df,g(t)

f(t)g(t)
= 0.

We are uncertain if Conjecture 5 is true, but suspect that if it is true, proving it

will be very difficult. We can make corresponding versions of Conjectures 4 and 5
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that are restricted to cyclotomic polynomials arising from primes. Define D̄(t) to

be the same as D(t) but counting only the good pairs (m,n) where m and n are

both prime. Define D̄f,g(t) similarly. We expect the following two conjectures.

Conjecture 6. We have

lim
t→∞

D̄(t)

π(t)2
= 0.

Conjecture 7. For any such f(t) and g(t) we have

lim
t→∞

D̄f,g(t)

π(f(t))π(g(t))
= 0.

Note that similar questions have been asked and answered about general poly-

nomials. See in particular [22] and [18].

Ochem and Rao type results also show that many prime divisors of an odd perfect

number must have many repeated prime factors. It is therefore of interest whether

this sort of result can be used to improve on results like [12] which rely heavily on

inducting on the divisors of an odd perfect number. One other obvious question

is whether anyone can replace the Ochem and Rao type results with a better than

linear inequality. The methods used in this paper do not seem to have any hope of

doing so, but it is plausible that sieve theoretic methods could result in some similar

type of restriction. One obvious question is how well we can upper bound Ω(N) in

terms of ω(N). Recall Nielsen’s result [12] that if N is an odd perfect number, then

N < 24ω(N)

. (120)

If N is an odd perfect number, then we trivially have 3Ω(N) < N , which when

combined with Inequality (120) gives

Ω(N) < 4ω(N) ln 2

ln 3
.

Improving this bound directly in a non-trivial fashion seems worth exploring. Nielsen

[12] also showed that if N is an odd perfect number, and we have P =
∏
p|N p, then

N < P 2ω(N)

, (121)

from which it follows that we have ai ≤ 2ω(N)−2 for at least one of the ai. It may

be possible to use this fact to improve the Ochem-Rao results further. We may also

combine the Ochem and Rao type bounds to get a straightforward upper bound for

N in terms of ω. In particular, if we know that Ω ≥ αω + β, then we easily have

from Inequality (120) that

N < 24(
Ω−β
α )

. (122)
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Using our main theorem we have the result that if (3, N) = 1 that

N < 24(
113Ω+286

302 )
. (123)

It seems worth wondering if we can obtain upper bounds on N in terms of Ω which

are substantially better than simply combining the Nielsen bound with the best

available Ochem and Rao type bound.

Ochem and Rao also used similar techniques in their proof that an odd perfect

number must have a component of size at least 1062 [15]. In particular, they first

showed that any odd perfect number N must either have a component of size greater

than 1062 or that N cannot be divisible by any prime less than 108. They then

concluded that an odd perfect number with all components smaller than 1062 can

only have primes raised to the first, second, fourth or sixth powers. They obtained

a set of linear inequalities relating how many such primes there were which were too

tight and thus obtained a contradiction. It is likely that the type tightened bounds

in [23] and this paper can be used to improve that type of bound.

An additional area of interest may be to generalize the Ochem and Rao type of

results beyond odd perfect numbers. Recall that a number N is said to be multiply

perfect ifNk = σ(N) for some k, and we then say thatN is k-perfect. (Some authors

use the term multiperfect rather than multiply perfect.) Under this terminology,

perfect numbers are precisely the 2-perfect numbers. It is a long-standing question

if the only multiply perfect odd number is 1. We suspect that the Ochem and Rao

type results can be extended to odd multiply perfect numbers where the constant

term is allowed to be a function of k.

A different generalization of perfect numbers leads to Ore harmonic numbers.

Ore noted that if N is a perfect number, then one must have σ(N)|(Nτ(N)) where

τ(N) is the number of positive divisors of N . Ore called numbers n satisfying

σ(n)|(nτ(n)) harmonic numbers since they are precisely the numbers where the

harmonic mean of their positive divisors is an integer. Note that there are multiply

perfect numbers which are not Ore harmonic numbers. Similarly, there are Ore

harmonic numbers which are not multiply perfect numbers. Ore asked if all Ore

harmonic numbers are even. It would be interesting to see if one can extend the

Ochem and Rao type results to Ore harmonic numbers. One can also generalize

Ore’s harmonic numbers. We will call n a generalized harmonic number if n satisfies

σ(n)|(n(τ(n))gm) where m is some integer and g is the largest odd divisor of τ(n).

It again appears that all solutions here are odd, although as far as we are aware, this

generalization has not been investigated in the literature. It would be interesting to

see if Ochem and Rao type of bounds can be extended to these generalized harmonic

numbers.

Another possible direction is rather than to generalize, instead to narrow the sit-

uation. Colton [2] has shown that no perfect number (whether even or odd) satisfies

τ(n)|n. However, the set of positive integers which satisfy τ(n)|n has density zero
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[10]. In contrast, the set of numbers n where τ(n)|σ(n) has density 1 [1]. It is not

hard to show that the only even perfect number n satisfying τ(n)|σ(n) is n = 6.

One might ask if we can say anything interesting about odd perfect numbers N

satisfying τ(N)|σ(N). In particular, it is likely that Ochem-Rao type results can

be substantially improved if one is restricted to this set.
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