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Abstract. We show that if p : B → G is a Fell bundle over a locally compact
groupoid G and that A = Γ0(G(0);B) is the C∗-algebra sitting over G(0),
then there is a continuous G-action on PrimA that reduces to the usual action
when B comes from a dynamical system. As an application, we show that if I

is a G-invariant ideal in A, then there is a short exact sequence of C∗-algebras

0 // C∗(G,BI) // C∗(G,B) // C∗(G,BI) // 0,

where C∗(G,B) is the Fell bundle C∗-algebra and BI and BI are naturally
defined Fell bundles corresponding to I and A/I, respectively. Of course this
exact sequence reduces to the usual one for C∗-dynamical systems.

Introduction

An important source of examples of C∗-algebras are constructs associated to
dynamics of some sort. Coming first on any such list would be group C∗-algebras
followed closely by crossed product C∗-algebras coming from locally compact au-
tomorphism groups. More generally, we have the C∗-algebras associated to locally
compact groupoids and groupoid dynamical systems. A very important extension
of group dynamical systems is given by Fell bundles over groups. Fell bundles
over groups were originally called (saturated) C∗-algebraic bundles by Fell, and are
studied systematically in [13, Chap. VIII]. As illustrated by [8, Theorem 7.3], the
C∗-algebra of a Fell bundle over a group G should be considered as a very general
type of crossed product of the C∗-algebra sitting over the unit of G. Following
Yamagami [27, 28], Kumjian formalized the notion of a Fell bundle p : B → G
over a locally compact groupoid in [21]. In this case, the associated C∗-algebra is
meant to be a general type of crossed product of the C∗-algebra A = Γ0(G;B) of
B sitting over the unit space G(0). This is illustrated by the examples in [23, §2].

The C∗-algebras of Fell bundles have been the object of considerable study start-
ing with the group context [1, 7–11], then over étale groupoids [5, 14, 15] and even-
tually in the general setting [2–4, 20, 23]. This note is meant as a first step in a
systematic investigation of the ideal structure of C∗-algebras associated to Fell bun-
dles over locally compact (Hausdorff) groupoids. Our first result is to show that if
p : B → G is a Fell bundle and A = Γ0(G;B) is the C∗-algebra of B over G(0),
then even though there is no explicit action of G on A, there is a natural G-action
of G on the primitive ideal space PrimA of A which generalizes the usual notion
when B is the Fell bundle associated to either a classical C∗-dynamical system or
a groupoid dynamical system.
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Once we have a G-action on PrimA, then it makes sense to speak of an invariant
ideal I of A. Our next contribution is that to each G-invariant ideal I in A, there
are naturally associated Fell bundles pI : BI → G and pI : BI → G corresponding
to I and A/I, respectively, and a short exact sequence

0 // C∗(G,BI) // C∗(G,B) // C∗(G,BI) // 0

of C∗-algebras. This result generalizes the fundamental result in C∗-dynamical
systems that asserts that if (A,G, α) is a C∗-dynamical system with I an α-invariant
ideal in A, then there is a short exact sequence

0 // I ⋊α G // A⋊α G // (A/I)⋊αI G // 0.

(For example, see [26, Proposition 3.19].) However, the proof is considerably more
subtle in our setting and requires the Disintegration Theorem for Fell bundles [26,
Theorem 4.13].

In subsequent work, we intend to use these elementary results together with [19]
to study the Mackey machine for Fell bundles and the fine ideal structure of the
corresponding C∗-algebras.

We adopt the usual conventions in the subject. Representations of C∗-algebras
will be assumed to be nondegenerate, and homomorphisms between C∗-algebras
will always be ∗-preserving. We will write M(A) for the multiplier algebra of a
C∗-algebra A. As in [22, 25], we view M(A) as the set of adjointable operators

L(A) where A is viewed as a Hilbert module over itself. We write Ã for the C∗-

subalgebra of M(A) generated by A and 1A. Thus Ã is simply A if A has a unit
and A with a unit adjoined otherwise.

1. Preliminaries

A Fell bundle p : B → G over a locally compact Hausdorff groupoid G is an up-
per semicontinuous Banach bundle equipped with a continuous, bilinear, associative
multiplication map (a, b) 7→ ab from B(2) := { (a, b) ∈ B ×B : (p(a), p(b)) ∈ G(2) }
to B and an involution b 7→ b∗ from B to B satisfying axioms (a)–(e) of [23, Defi-
nition 1.1]. We will adopt the notations and conventions of [23] and refer to [23, §1]
for the construction of the associated C∗-algebra C∗(G,B) built from the ∗-algebra
of continuous compactly supported sections Γc(G;B) of B. In particular, our Fell
bundles are saturated in that B(x)B(y) := span{ ab : a ∈ B(x) and b ∈ B(y) } =
B(xy). Since we make considerable use of the Disintegration Theorem for Fell bun-
dles (see [23, Theorem 4.13]), we will need to assume that all our Fell bundles are
separable in that G is second countable and that the Banach space Γ0(G;B) is
separable. It is important to keep in mind that the property that each fibre B(x)
is an imprimitivity bimodule has important consequences. For example, it follows
that b∗b ≥ 0 in the C∗-algebra sitting over s(b) := s(p(b)), and that ‖b∗b‖ = ‖b‖2

for all b ∈ B. Moreover, we have the following useful observation.

Lemma 1. If p : B → G is a Fell bundle then ‖ab‖ ≤ ‖a‖‖b‖ for all (a, b) ∈ B(2).

Proof. The lemma follows from [23, Lemma 1.2] once we prove the following ob-
servation (which is probably known to specialists but we have been unable to find
a reference in the literature): If A,B,C are C∗-algebras, and AXB and BYC are
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imprimitivity bimodules,1 then

‖x⊗ y‖ ≤ ‖x‖‖y‖

for all x⊗y ∈ X⊗B Y . The proof of this observation follows from the computation:

‖x⊗ y‖2 = ‖〈x⊗ y , x⊗ y〉
C

‖ =
∥

∥

〈

〈x , x〉
B

· y , y
〉

C

∥

∥

=
∥

∥

〈

〈x , x〉
1/2

B

· y , 〈x , x〉
1/2

B

· y
〉

C

∥

∥.

If T is an adjointable operator on Y we know that 〈Ty , Ty〉
C

≤ ‖T‖2‖〈y , y〉
C

‖.

Since B acts on the left on Y via adjointable operators it follows that

‖x⊗ y‖2 ≤
∥

∥‖〈x , x〉
1/2

B

‖2〈y , y〉
C

∥

∥ = ‖x‖2‖y‖2. �

We will also require a number of basics concerning upper semicontinuous Banach
bundles. The definition of an upper semicontinuous-Banach bundle, as well as a col-
lection of basic results and original sources, are given in [23, Appendix A]. Actually,
much of what is needed is covered in detail in [26, Appendix C.2]; unfortunately,
all the results in [26, Appendix C.2] are stated in terms of upper semicontinuous
C∗-bundles even though the additional C∗-structure is not always necessary for the
result. For example, the proof of [26, Proposition C.20], which characterizes con-
vergence in the total space, makes no use of the C∗-axioms and remains valid for
upper semicontinuous-Banach bundles by simply replacing “upper semicontinuous
C∗-bundle over X” by “upper semicontinuous-Banach bundle over X”. There-
fore we will sheepishly, but firmly, cite results like [26, Proposition C.20] below for
upper semicontinuous-Banach bundles with the implicit understanding that the ap-
propriate Banach bundle result is valid with essentially the same proof as given in
[26, Appendix C.2]. For example, if p : B → X is an upper semicontinuous-Banach
bundle over X, then we note that Γ0(X;B) is a Banach space in the sup-norm by
(the same proof as given in) [26, Proposition C.23].

Although the total space of a Banach bundle is an important theoretical tool
in groupoid constructs, in the wild Banach bundles are built by first specifying
what the sections should be. As far as we know, the next result is originally
due to Hofmann [17, 18], although only the details for continuous bundles were
ever published (see, for example, [12, Theorem II.13.18]).2 What is needed is the
following.

Theorem 2 (Hofmann-Fell). Let X be a locally compact space and suppose that
for each x ∈ X, we are given a Banach space B(x). Let B be the disjoint union
∐

x∈X B(x), and let p : B → X be the obvious bundle. Suppose that Γ is a subspace
of sections such that

(a) for each f ∈ Γ, x 7→ ‖f(x)‖ is upper semicontinuous, and
(b) for each x ∈ X, { f(x) : f ∈ Γ } is dense in B(x).

1All that is required here is for X and Y to be a right Hilbert modules with actions of A and
B, respectively, coming from homomorphisms into the adjointable operators. Such objects are
either called C∗-correspondences or right Hilbert bimodules in the literature.

2Recently, Buss and Exel have published a version of this result which does not even require

the base space X to be Hausdorff: [4, Proposition 2.4]. In their result, they make the extra
assumption that { f(x) : f ∈ Γ } is all of B(x). This is required to ensure that the topology is
unique when X fails to be Hausdorff. In our applications, this extra assumption on the fibres is

satisfied, so we could also appeal to [4, Proposition 2.4].
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Then there is a unique topology on B such that p : B → X is an upper semicon-
tinuous-Banach bundle over X with Γ ⊂ Γ(X;B).

Proof. This result is stated in [6, Proposition 1.3] with a reference to [17]. With
the proviso discussed above, it follows from [26, Theorem C.25]. �

Remark 3. If p : B → G is a Fell bundle over a group G, then the underlying
Banach bundle is necessarily continuous. This was observed in [2, Lemma 3.30]

and is apparently due to Exel. The idea is that a 7→ (a∗, a) 7→ a∗a 7→ ‖a∗a‖
1
2 must

be continuous as maps B → B×B → A → [0,∞). The same argument shows that
if p : B → G is a Fell bundle over a locally compact Hausdorff groupoid G, then
the underlying Banach bundle is continuous if and only if the associated C∗-algebra
A := Γ0(G

(0);B) is a continuous field over G(0).

If p : B → G is a Fell bundle over a locally compact Hausdorff groupoid G, then

A := Γ0(G
(0);B)

is a C∗-algebra which we call the C∗-algebra of B sitting over G(0). Note that A
is a C0(G

(0))-algebra, and let σ : PrimA → G(0) be the associated structure map.3

If u ∈ G(0), let qu : A → A(u) be the quotient map with kernel Iu. Then σ(P ) = u
if and only if Iu ⊂ P .4

Furthermore, PrimA is naturally identified with the disjoint union of the
PrimA(u) [26, Proposition C.5]. Thus we will write

PrimA = { (u, P ) : u ∈ G(0) and P ∈ PrimA(u) }.

It will be important to keep in mind that (u, P ) = q−1
u (P ).

We will need the following technical lemma on C0(X)-algebras in the proof of
Proposition 15.

Lemma 4. Suppose that A is a C0(X)-algebra with structure map σ : PrimA → X
(see [26, Proposition C.5]), and let A(x) = A/Ix be the fibre over x. Let K be an
ideal in A, and let

F = {P ∈ PrimA : P ⊃ K }

be the closed subset of PrimA identified with Prim(A/K). Then σ|F induces a
C0(X)-structure on A/K and (A/K)(x) = (A/K)/Ix, where Ix = (Ix +K)/K ∼=
Ix/(Ix ∩K). In particular, (A/K)(x) ∼= A/(K + Ix).

Proof. Recall that the Dauns-Hofmann Theorem [26, Theorem A.24] gives an iso-
morphism ΦA of Cb(PrimA) onto the center ZM(A) of the multiplier algebra which
is characterized by

(ΦA(f)a)(P ) = f(P )a(P ),

where a(P ) denotes the image of a in A/P . Then we view A as a C0(X)-module
via

ϕ · a = ΦA(ϕ ◦ σ)a.

Also recall that

Ix = span{ϕ · a : a ∈ A and ϕ ∈ Jx },

3For a summary of basic results and our notations for C0(X)-algebras, please refer to [26, §C.1].
4For u ∈ G(0), the fibres A(u) and B(u) are identical as sets. If there is an excuse for using

different letters, it is that A(u) is meant to be thought of as a C∗-algebra and B(u) is A(u) viewed

as a A(u) – A(u)-imprimitivity bimodule.
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where Jx = {ϕ ∈ C0(X) : ϕ(x) = 0 }. Similarly, if q : A → A/K is the quotient
map, then

Ix = span{ϕ · q(a) : a ∈ A and ϕ ∈ Jx }.

Notice that if P ⊃ K, then

ϕ · q(a)(P/K) = ϕ(σ(P ))q(a)(P/K) = q(ϕ(σ(P ))a)(P/K).

On the other hand, if P ⊃ K, then the natural isomorphism of (A/K)/(P/K) with
A/P carries q(a)(P/K) to a(P ). It follows that

q(ϕ(σ(P ))a)(P/K) = q(ϕ · a)(P/K).

Thus,

Ix = span{ q(ϕ · a) : a ∈ A and ϕ ∈ Jx } = q(Ix) = (Ix +K)/K.

For the final statement, notice that

(A/K)(x) = (A/K)/Ix = (A/K)/((Ix +K)/K) ∼= A/(Ix +K). �

We will make use of the following remark in §3.

Remark 5. Note that if X is a A –B-imprimitivity bimodule and if J is an ideal in
A, then Y := span{ a · x : a ∈ J and x ∈ X } is a nondegenerate J-module. Then,
employing the Cohen Factorization Theorem ([25, Proposition 2.33]),

Y = { a · y : a ∈ J and y ∈ Y } ⊂ { a · x : a ∈ J and x ∈ X }

⊂ span{ a · x : a ∈ J and x ∈ X } = Y.

Consequently, Y = { a · x : a ∈ J and x ∈ X }, and will routinely write J · X in
place of Y . Similarly, we’ll write X ·I for the corresponding A –B-submodule when
I is an ideal in B.

2. The G-action on PrimA

Now we want to see that PrimA admits a G-action. The key is to recall that
for each x ∈ G, B(x) is a A

(

r(x)
)

–A
(

s(x)
)

-imprimitivity bimodule. Thus by
[25, Corollary 3.33], the Rieffel correspondence defines a homeomorphism

hx : PrimA
(

s(x)
)

→ PrimA
(

r(x)
)

where hx is the restriction of B(x)–Ind to PrimA
(

s(x)
)

.5 We will use the convenient
facts that hx−1 is the inverse to hx, and that hx is containment preserving [25,
Corollary 3.31].

Then we can define

(1) x ·
(

s(x), P
)

:=
(

r(x), hx(P )
)

.

Suppose that (x, y) ∈ G(2) and that L is a representation of A
(

s(x)
)

. It is not hard
to check that

B(x)–Ind
(

B(y)–Ind(L)
)

∼=
(

B(x)⊗A(s(x)) B(y)
)

–Ind(L).

Since B(x)⊗A(s(x)) B(y) and B(xy) are isomorphic as imprimitivity bimodules by
[23, Lemma 1.2], it follows from [25, Proposition 3.24] that

hx ◦ hy = hxy.

5Recall that if X is an A –B-imprimitivity bimodule, then X–Ind is a continuous map from
I(B) to I(A) characterized by X–Ind(kerL) = ker

(

X–Ind(L)
)

for representations L of B (see

[25, Proposition 3.24]).
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Since hu = idPrimA(u), it follows that (1) defines an action of G on PrimA.

Lemma 6. Suppose that x ∈ G and that P ∈ PrimA
(

s(x)
)

. Then

hx(P ) = span{ adb∗ : a, b ∈ B(x) and d ∈ P }.

Proof. By the axioms for Fell bundles, the A
(

r(x)
)

-valued inner product on the
imprimitivity bimodule B(x) is given by

∗

〈a , b〉 = ab∗. Then we can apply [25,

Proposition 3.24] to check that

hx(P ) := B(x)–Ind(P )

= span{
∗

〈ad , b〉 : a, b ∈ B(x) and d ∈ P }

= span{ adb∗ : a, b ∈ B(x) and d ∈ P } �

Remark 7. We want to see that the G-action given by (1) is the same as the
usual one when p : B → G is the Fell bundle associated to a dynamical system
(D,G,α) (as in [23, Example 2.1]). To start with, assume that G is a group. In
this case B is the trivial bundle D × G and the multiplication in B is given by
(a, s)(b, t) = (aαs(g), st). Although it is tempting to simply identify D with A(e),
it is useful to distinguish the two. In particular, if P ∈ PrimA(e), then there is an
ideal P ∈ PrimD such that P = { (d, e) : d ∈ P }. Then Lemma 6 implies that

hs(P ) = span{ (a, s)(d, e)(αs−1(b∗), s−1) : a, b ∈ D and d ∈ P }

= span{ (aαs(d)b
∗, e) : a, b ∈ D and d ∈ P }

= (αs(P ), e),

and we recover the usual thing.
If G is a groupoid and D = Γ0(G

(0);D), then B is the pull-back r∗D , and the
multiplication in B is given by

(a, x)(b, y) =
(

aαx(b), xy
)

.

Again, it is useful to distinguish the fibre D(u) and its image A(u) = { (d, u) : d ∈
D(u) } in B. Now, invoking Lemma 6, if P ∈ PrimA

(

s(x)
)

and P is the ideal in

D
(

s(x)
)

such that P = { (d, s(x)) : d ∈ P }, then

hx(P ) = span{ (a, x)(d, s(x))(αx−1(b∗), x−1) : a, b ∈ A
(

r(x)
)

and d ∈ P }

= span{
(

aαx(d)b
∗, r(x)

)

: a, b ∈ A
(

r(x)
)

and d ∈ P }

=
(

αx(P ), r(x)
)

= αx(P ).

Therefore we recover the usual G-action on PrimA in this case as well.

Remark 8 (Viewing hx as a map on ideals). To ease the notational burden, we
will also write hx for the map B(x)–Ind : I

(

A(s(x)
)

→ I
(

A(r(x)
)

. In view of
[25, Theorem 3.29], it is still the case that hx−1 is the inverse to hx, and of course,
hx is still containment preserving. Note that if J is an ideal in A, then its image
qu(J) in A(u) is { c(u) : c ∈ J }. In particular, repeating the proof of Lemma 6, we
see that

(2) hx

(

qs(x)(J)
)

= span{ ac
(

s(x)
)

b∗ : a, b ∈ B(x) and c ∈ J }.



IDEAL STRUCTURE OF FELL BUNDLE C∗-ALGEBRAS 7

Proposition 9. If p : B → G is a Fell bundle and A is the associated C∗-algebra
over G(0), then the G-action on PrimA defined by (1) is continuous and PrimA is
a G-space.

Proof. At this point, we just need to show that if (xi, P i) → (x0, P 0) in G∗PrimA,
then xi · P i → x0 · P 0 in PrimA. For convenience, let P i =

(

s(xi), Pi

)

.

Suppose that x0 · P 0 ∈ OJ = {K ∈ PrimA : K 6⊃ J }. Then it will suffice to
see that xi · P i is eventually in OJ . Suppose not. Then we can pass to a subnet,
relabel, and assume that for all i 6= 0, we have

(3) xi ·
(

s(xi), Pi

)

⊃ J.

Since xi ·
(

s(xi), Pi

)

=
(

r(xi), hxi
(Pi)

)

, (3) implies that hxi
(Pi) ⊃ qr(xi)(J). Since

the inverse of hxi
is hx−1

i

, we have

(4) Pi ⊃ hx−1
i

(

qr(xi)(J)
)

for all i 6= 0.

We claim it will suffice to see that (4) holds for i = 0. To see this, notice that if
(4) holds for i = 0, then

hx0
(P0) ⊃ qr(x0)(J),

and since
(

r(x), hx(P )
)

= q−1
r(x)

(

hx(P )
)

, this implies

x0 ·
(

s(x0), P0

)

=
(

r(x0), hx0
(P0)

)

⊃ q−1
r(x0)

(

qr(x0)(J)
)

⊃ J.

But this contradicts the assumption that x0 ·P 0 ∈ OJ and will complete the proof.
To establish the claim, we notice that when i = 0 the right-hand side of (4) is

given by
span{ a∗c

(

r(x0)
)

b : a, b ∈ B(x) and c ∈ J },

where we have invoked the fact that B(x−1) = B(x)∗ and used (2) from Re-
mark 8. Thus it will suffice to show that for any c ∈ J and a, b ∈ B(x0), we
have a∗c

(

r(x0)
)

b ∈ P0.

Since we always assume that Fell bundles have enough sections,6 there are f, g ∈
Γc(G;B) such that f(x0) = a and g(x0) = b. Then we can form a section ξ ∈
Γc(G; r∗A ) in the C∗-algebra C := Γ0(G; r∗A ) given by

ξ(x) := f(x)∗c
(

r(x)
)

g(x).

Notice that if π is an irreducible representation of A with σ(kerπ) = u, then
there is an associated irreducible representation π̄ of A(u) such that π = π̄ ◦ qu.
If x ∈ G and r(x) = u, then we get an irreducible representation [x, π] of C by
[x, π](f) = π̄

(

f(x)
)

. Furthermore, by [24, Proposition 1.3 and Lemma 1.2], the
spectrum of C is homeomorphic to

{ [x, π] ∈ G× Â : r(x) = σ(kerπ) }.

Now let πi be an irreducible representation of A with kernel P i. Then, since
the topology on Â is pulled back from the topology on PrimA, πi → π0 in Â.
Consequently,

(5) [x−1
i , πi] → [x−1

0 , π0] in Ĉ.

By construction,

ξ(xi) ∈ span{ a∗db : a, b ∈ B(xi) and d ∈ qr(xi)(J) } = hx−1
i

(

qr(xi)(J)
)

.

6This is actually automatic. See the comments on page 51 of [23, Appendix A].
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Hence ξ(xi) ∈ Pi = ker π̄i by (4). Therefore

[x−1
i , πi](ξ) = 0 for all i 6= 0.

Therefore [x−1
0 , π0](ξ) = 0 by (5). Since c was an arbitrary element of J , this proves

that (4) holds for i = 0 and completes the proof. �

3. Invariant Ideals

It is a classic result in crossed products ([16, Proposition 12]) that if (A,G, α)
is a dynamical system and if I is an α-invariant ideal, then there is a short exact
sequence

0 // I ⋊α G
ι⋊id

// A⋊α G
q⋊id

// (A/I)⋊αI G // 0

(see [26, Proposition 3.19]). In this section, we want to prove a similar result for Fell
bundles. This entails some nontrivial work. Even to start, we need to determine
what an invariant ideal is, and which C∗-algebras correspond to I and the quotient
A/I.

3.1. Preliminaries. We assume that p : B → G is a separable Fell bundle over
a locally compact Hausdorff groupoid G. Let A = Γ0(G

(0);B) be the C∗-algebra
over G(0). We say that an ideal I in A is G-invariant if the closed set

hull(I) = {P ∈ PrimA : P ⊃ I }

is a G-invariant subset of PrimA with respect to the G-action introduced in Propo-
sition 9.

Now fix an ideal I ∈ I(A). If qu : A → A(u) = A/Ju is the quotient map, then
we let I(u) := qu(I) = (I + Ju)/Ju.

Lemma 10. Let hx : I
(

A(s(x))
)

→ I
(

A(r(x))
)

be the Rieffel correspondence. If
I is a G-invariant ideal, then

hx

(

I(s(x))
)

= I(r(x)).

In particular, B(x) · I(s(x)) = I(r(x)) ·B(x).

Remark 11. We have included a \cdot in the above notation to stress that B(x) ·
I(s(x)) is the sub-bimodule corresponding to I(s(x)) in the imprimitivity bimodule
B(x). Since the right action is just given by multiplication in B, the \cdot can be
dropped without any harm. In fact, it will be critical in what follows that we are
just dealing with multiplication in B which is an associative operation (when that
makes sense).

Proof. If P ∈ Prim
(

A(s(x))
)

and I is invariant, then

P ⊃ I(s(x)) ⇐⇒
(

s(x), P
)

⊃ I

⇐⇒
(

r(x), hx(P )
)

⊃ I

⇐⇒ hx(P ) ⊃ I(r(x)).

The first assertion follows. The second assertion follows from [25, Proposition 3.24].
�

Now we define
BI := { b ∈ B : b∗b ∈ I(s(b)) },

where, as is usual, we write s(b) as a shorthand for s(p(b)).
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Lemma 12. If I is an ideal in A, then

BI = { b ∈ B : a∗b ∈ I(s(b)) for all a ∈ B(p(b)) }.

In particular, b ∈ BI implies that b ∈ B(p(b)) · I(s(b)).

Remark 13. Note that B(x) · I(s(b)) is always an imprimitivity bimodule between
I(s(b)) and the ideal of A(r(x)) corresponding to I(s(b)) under the Rieffel corre-
spondence [25, Proposition 3.25].

Proof. Since B(p(b)) is a right Hilbert A(s(b))-module, this result follows from
[25, Lemma 3.23]. �

Proposition 14. Suppose that p : B → G is a Fell bundle over a locally compact
Hausdorff groupoid G and that I is an ideal in the C∗-algebra A = Γ0(G

(0);B).
Let BI = { b ∈ B : b∗b ∈ I(s(b)) } and pI = p|BI

. Then pI : BI → G is an
upper semicontinuous-Banach bundle with fibres BI(x) = B(x) · I(s(b)).7 If I is
G-invariant, then BI is a Fell bundle with the operations inherited from B.

Proof. It is fairly straightforward to check that pI : BI → G is an upper semicon-
tinuous-Banach bundle with the exception of verifying that pI is open.8 To prove
that, we’ll use [26, Proposition 1.15]. Suppose that b ∈ BI and that xi → p(b). It
will suffice to find, after passing to a subsequence and relabeling, elements bi ∈ BI

such that bi → b and p(bi) = xi.
Since BI(p(b)) = B(p(b)) · I(s(b)), in view of Remark 5 we can suppose that

b = b′ · a(s(b)) where a ∈ I (and we write a(u) for the image of a in I(u)). Since p
is open, we can pass to a subsequence, relabel, and find b′i → b′ such that p(b′i) =
xi. But a(s(xi)) → a(s(b)) in B, so the continuity of multiplication implies that
b′i ·a(s(xi)) → b′ ·a(s(b)) = b. But bi := b′i ·a(s(xi)) ∈ BI . This completes the proof
that pI is open and the proof that pI is an upper semicontinuous-Banach bundle.

Now we assume that I is G-invariant. Suppose that (b, b′) ∈ B
(2)
I . Then b ∈

B(p(b)) · I(s(b)), b′ ∈ B(p(b′)) · I(s(b′)) and s(b) = r(b′). Thus using Lemma 10,

bb′ ∈ B(p(b))I(s(b))B(p(b′))I(s(b′))

⊂ B(p(b))B(p(b′))I(s(b′))2

⊂ B(p(bb′)I(s(bb′)).

Thus bb′ ∈ BI and BI is closed under multiplication. Similarly, b∗ ∈
I(s(b))B(p(b)−1) = B(p(b∗))I(s(b∗)), and b∗ ∈ BI .

Therefore axioms (a)–(c) of [23, Definition 1.1] are clearly satisfied. Since
BI(u) = I(u), axiom (d) is satisfied, and [25, Proposition 3.25] together with
Lemma 10 imply that BI(x) is an I(r(x)) – I(s(x))-imprimitivity bimodule. Thus
(e) holds as well. �

Now we let BI(x) be the quotient module B(x)/BI(x). If J is the ideal of A(r(x))
corresponding to I(s(x)) under the Rieffel correspondence (so that J = I(r(x)) if
I is invariant by Lemma 10), then BI(x) is a A(r(x))/J –A(s(x))/I(s(x))-imprim-
itivity bimodule by [26, Proposition 3.25]. Let

B
I :=

∐

x∈G

BI(x)

7It is possible — even likely — that some of the fibres BI(x) are the zero space.
8Keep in mind that the restriction of an open map need not be open.
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and form the bundle pI : BI → G. If f ∈ Γc(G;B), then we define a section q(f) of
pI : BI → G by q(f)(x) = [f(x)], where as usual, [b] denotes the class of b ∈ B(x)
in BI(x).

Proposition 15. Suppose that p : B → G is a Fell bundle over a locally compact
Hausdorff groupoid G and that I is an ideal in the C∗-algebra A = Γ0(G

(0);B).
Then BI has a topology making pI : BI → G an upper semicontinuous-Banach
bundle such that Γ := { q(f) : f ∈ Γc(G;B) } is a dense subspace of Γc(G;BI) in
the inductive limit topology. If I is G-invariant, then pI : BI → G is a Fell bundle
with the operations induced from B.

Proof of Proposition 15. Recall that BI(x) is a quotient imprimitivity module,
which is in particular a right Hilbert A(s(x))/I(s(x))-module, where the Hilbert
module operations are induced from the Fell bundle operations on B. Therefore,

‖q(f)(x)‖2 = ‖q̄(f(x)∗f(x))‖,

where q̄ : A → A/I(s(x)) is the quotient map. But Lemma 4 implies that A/I is
a C0(G

(0))-algebra with fibre over u, (A/I)(u), naturally isomorphic to A(u)/I(u).
Therefore,

‖q(f)(x)‖2 = ‖qI(f(x)
∗f(x))(s(x))‖,

where qI : A → A/I is the quotient map. Therefore, x 7→ ‖q(f)(x)‖ is the com-
position of the continuous map x 7→ f(x)∗f(x) from G to A with the upper semi-
continuous map qI(a) 7→ ‖qI(a)(u)‖ coming from the C0(G

(0))-algebra structure
([26, Proposition C.10]). Therefore x 7→ ‖q(f)(x)‖ is upper semicontinuous and we
can apply Theorem 2 to give BI a topology such that pI : BI → G is an upper
semicontinuous-Banach bundle such that Γ := { q(f) : g ∈ Γc(G;B) } ⊂ Γc(G;BI).
Furthermore, since Γ is a C0(G)-module, it follows from [23, Lemma A.4] that Γ is
dense in Γc(G;BI) in the inductive limit topology. This establishes all but the last
assertion.

Now assume that I is G-invariant. Let (x, y) ∈ G(2). Suppose that a, a′ ∈ B(x),
that b, b′ ∈ B(y) and that a′ = a+ a′′, b′ = b+ b′′ with a′′ ∈ BI(x) and b′′ ∈ BI(y).
Since s(x) = r(y), we can apply Lemma 10 to calculate as follows:

a′b′ = ab+ a′′b+ ab′′ + a′′b′′

∈ ab+B(x)I(r(y))B(y) +B(x)B(y)I(s(y)) +B(x)I(r(y))B(y)I(s(y))

⊂ ab+B(xy)I(s(y)).

Therefore, we get a well-defined multiplication on (BI)(2).
To see that multiplication is continuous from (BI)(2) to BI we first want to

establish that the quotient map a 7→ [a] is continuous from B to BI . To this end,
suppose that ai → a in B. Let f ∈ Γc(G;B) be such that f(p(a)) = a. Then

‖f(p(ai))− ai‖ → 0.

But then
‖q(f)(p(ai))− [ai]‖ → 0.

Since q(f) ∈ Γc(G;BI), we have [ai] → [a] by [26, Proposition C.20].
Now suppose that ([ai], [bi]) → ([a], [b]) in (BI)(2) with

(

pI([ai]), p
I([bi])

)

=

(xi, yi) converging to (x, y) in G(2). Let f, g ∈ Γc(G;B) be such that q(f)(x) = [a]
and q(g)(x) = [b]. By the above observation, we have

q(f)(xi)q(g)(yi) → [a][b].
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However, using Lemma 1, we see easily that

‖q(f)(xi)q(g)(yi)− [ai][bi]‖ → 0.

Therefore [ai][bi] → [a][b] by [26, Proposition C.20], and multiplication is continu-
ous. The argument that [a] 7→ [a∗] is a well defined and continuous involution is
similar and we omit the details.

It is now straightforward to see that pI : BI → G is a Fell bundle as claimed:
properties (a)–(c) of [23, Definition 1.1] are clearly satisfied. On the other hand,
if u ∈ G(0), then BI(u) is the C∗-algebra A(u)/I(u) = (A/I)(u), while if x ∈ G,
then BI(x) is a (A/I)(r(x)) – (A/I)(s(x))-imprimitivity bimodule with respect to
the quotient operations. Therefore properties (d) and (e) are also satisfied. �

3.2. The Exact Sequence. In this section, we assume throughout that I is a G-
invariant ideal in the C∗-algebra A = Γ0(G

(0);B) sitting over G(0) in a Fell bundle
p : B → G over a locally compact Hausdorff groupoid G. Of course we will use the
properties of BI and BI from Propositions 14 and 15.

We clearly have an injective ∗-homomorphism

ι : Γc(G;BI) → Γc(G;B)

given by inclusion. Also q 7→ q(f) is a ∗-homomorphism

q : Γc(G;B) → Γc(G;BI).

Proposition 15 implies that q(Γc(G;B)) is dense in Γc(G;BI) in the inductive limit
topology. Therefore q has dense range when viewed a map into C∗(G,BI).

Lemma 16. The map ι extends to an isomorphism of C∗(G,BI) onto an ideal

Ex(I) := ι(Γc(G;BI)) in Γc(G;B).

Proof. Suppose that f ∈ Γc(G;BI) and that g ∈ Γc(G;B). Then, using
Lemma 10, f(x)g(x−1y) ∈ B(x)I(s(x))B(x−1y) = B(y)I(s(y)) = BI(y), and
f∗(x) ∈ I(s(x))B(x−1) = B(x−1)I(r(x)) = BI(x

−1). It now follows easily that
Ex(I) is an ideal in C∗(G,B). We just need to see that ι is isometric for the
universal norms. Let L be an irreducible representation of C∗(G,B). Then either
L(ι(Γc(G;BI))) = { 0 } or L defines a representation, L′ of Γc(G;BI) in the sense
of [23, Definition 4.7] (which is nondegenerate because L is irreducible). Then

‖L(ι(f))‖ = ‖L′(f)‖ ≤ ‖f‖.

Since ‖L(ι(f))‖ ≤ ‖f‖ holds for all irreducible representations, we have

‖ι(f)‖ ≤ ‖f‖.

Now let L′ be a faithful representation of C∗(G,BI) on H. Let H0 be the dense
subspace

H0 = span{L′(f)h : f ∈ Γc(G;BI) and h ∈ H}.

Suppose that f1, . . . , fk ∈ Γc(G;BI) and that h1, . . . , hk ∈ H are such that

(6)

k
∑

i=1

L′(f)hi = 0.

Let g ∈ Γc(G;B). Let { ej } be an approximate identity for Γc(G;BI) in the
inductive limit topology (see [23, Proposition 5.1]). Then, since convolution is
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continuous in the inductive limit topology, g ∗ ej ∗ fi → g ∗ fi in the inductive limit
topology. Thus, using (6),

k
∑

i=1

L′(g ∗ fi)hi = lim
j

k
∑

i=1

L′(g ∗ ej ∗ fi)hi = lim
j

L′(g ∗ ej)
k

∑

i=1

L′(fi)hi = 0.

Thus we get a well-defined homomorphism L from Γc(G;B) to the linear operators
Lin(H0) on H0 characterized by

L(g)L′(f)h := L′(g ∗ f)h.

(Notice that L(ι(f)) is just the restriction of L′(f) to H0.) We claim that L is what
we called a pre-representation of B in [23, Definition 4.1]. To see this, notice that
if gi → g in the inductive limit topology on Γc(G;B), then gi ∗ f → g ∗ f in the
inductive limit topology on Γc(G;BI) for any f ∈ Γc(G;BI). Therefore

g 7→ (L(g)v | w)

is continuous in the inductive limit topology for all v, w ∈ H0. Therefore condi-
tion (a) of [23, Definition 4.1] is satisfied. To verify condition (b), just note that

(

L(g)L′(f)h | L′(f ′)h′
)

=
(

L′(g ∗ f)h | L′(f ′)h′
)

which, since L′ is a ∗-homomorphism and since (g ∗ f)∗ = f∗ ∗ g∗, is

=
(

h | L′(f∗ ∗ g∗ ∗ f ′)h′
)

=
(

L′(f)h | L(g∗)L′(f ′)h′
)

.

Lastly, condition (c) follows easily from the existence of an approximate identity
for Γc(G;B) in the inductive limit topology. Now the Disintegration Theorem
([23, Theorem 4.13]) implies that L can be extended to a bounded representation
of C∗(G,B). But then

‖f‖ = ‖L′(f)‖ = ‖L(ι(f))‖ ≤ ‖ι(f)‖.

Thus ι is isometric as claimed. �

Lemma 17. The ∗-homomorphism q is bounded and extends to a surjective homo-
morphism q of C∗(G,B) onto C∗(G,BI).

Proof. Let L′ be a faithful representation of C∗(G,BI). By the Disintegration
Theorem [23, Theorem 4.13], we can assume that L′ is the integrated form of a
strict representation (µ,G(0) ∗H , π̂′), where µ is a quasi-invariant measure, G(0) ∗
H is a Borel Hilbert bundle and π̂′ is a Borel ∗-functor on BI . Thus π̂′([b]) =
(

r(b), π̄([b]), s(b)
)

for a bounded operator π̄([b]) : H(s(b)) → H(r(b)) with ‖π̄([b])‖ ≤

‖[b]‖. Then we can define π̂(b) =
(

r(b), π(b), s(b)
)

, where π(b) := π̄([b]). Then

(µ,G(0) ∗H , π̂) is a strict representation of B, and its integrated form, L, satisfies
L = L′ ◦ q. In particular,

‖q(f)‖ = ‖L′(q(f))‖ = ‖L(f)‖ ≤ ‖f‖.

Hence q is norm decreasing on Γc(G;B). �

Theorem 18. Suppose that p : B → G is a Fell bundle over a locally compact
Hausdorff groupoid G. Let A = Γ0(G

(0);B) be the C∗-algebra over G(0) and suppose
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that I is a G-invariant ideal in A. Let BI and BI be the Fell bundles described
above. Then

0 // C∗(G,BI)
ι

// C∗(G,B)
q

// C∗(G,BI) // 0

is a short exact sequence of C∗-algebras.

In view of Lemmas 16 and 17, it will suffice to see that ker q = Ex(I). This will
require some work, and we start with some preliminary comments.

Let a ∈ Ã and f ∈ Γc(G;B). Define iA(a)f ∈ Γc(G;B) by

(iA(a)f)(x) = a(r(x))f(x).

Now view Γc(G;B) as a dense subspace of the C∗(G,B) viewed as a right Hilbert
module over itself with respect to the inner product

〈f , g〉
∗

:= f∗ ∗ g for f, g ∈ Γc(G;B).

Then it is easy to check that

〈iA(a)f , g〉
∗

= 〈f , iA(a
∗)g〉

∗

.

Then if ‖a‖21A − a∗a = c∗c, we have

‖a‖2〈f , f〉
∗

− 〈iA(a)f , iA(a)f〉
∗

= 〈iA(c)f , iA(c)f〉
∗

≥ 0.

Therefore iA is bounded and extends to a homomorphism iA : A → M(C∗(G,B)).
Let L be a representation of C∗(G,B) on H. In view of [23, Theorem 4.13],

we can assume that L is the integrated form of a strict representation (µ,G(0) ∗
H , π̂), where µ is a quasi-invariant measure, H = G(0) ∗ H is a Borel Hilbert
bundle and π̂ is a Borel ∗-functor with π̂(b) =

(

r(b), π(b), s(b)
)

for an operator
π(b) : B(H(s(b))) → B(H(r(b))) with ‖π(b)‖ ≤ ‖b‖. (We will often write π(b)
for both the operator and the corresponding element of End(G(0) ∗ H ) defined in
[23, Definition 4.3].)

Then L defines a representation πL of A on H via composition with iA : A →
M(C∗(G,B)). It is not hard to check that if h, k ∈ L2(G(0) ∗ H , µ), then

(

πL(a)h | k
)

=

∫

G

(

π(a(u))h(u) | k(u)
)

dµ(u).

In particular,

πL =

∫ ⊕

G

πu dµ(u),

where πu is the representation of A given by a 7→ π(a(u)).

Proof of Theorem 18. Clearly,

(7) Ex(I) ⊂ ker q.

Therefore it will suffice see that given any representation L of C∗(G,B), we have
either ker q ⊂ kerL, or Ex(I) 6⊂ kerL.

So let L be a representation of C∗(G,B). Let (µ,G(0) ∗ H , π̂) and πL be as
above. There are two cases to consider. First, I ⊂ kerπL, and second I 6⊂ kerπL.
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Case I ⊂ kerπL. Since A, and hence I, are separable, there is a Borel null set
N ⊂ G(0) such that

I ⊂ kerπu for all u /∈ N .

Let F := G(0) \N . Then if u ∈ F , we have π(I(u)) = { 0 }.
Suppose that s(x) ∈ F . Since BI(x) = B(x) · I(s(x)) is an I(r(x)) – I(s(x))-im-

primitivity bimodule, given any b ∈ BI(x), we have b
∗b ∈ I(s(x)) and 0 = π(b∗b) =

π(b)∗π(b). Therefore π(b) = 0, and π(bb∗) = 0. Since elements of the form bb∗ space
a dense subspace of I(r(x)), we see that π(I(r(x)) = { 0 }. Furthermore, since G is
σ-compact, we can shrink F a bit if necessary, and assume its saturation is Borel
(see that last paragraph of the proof of [23, Lemma 5.20]). Therefore, we may as
well assume that F itself is saturated.

Since µ is quasi-invariant, the restriction G|F is ν-conull.9 Furthermore, x ∈ G|F
and b ∈ BI(x) implies that π(b) = 0. Thus if b, b′ ∈ B(x) are such that b − b′ ∈
BI(x), then π(b) = π(b′). Thus if [b] is the class of b ∈ B(x) in BI(x), then we can
define π̄(x) ∈ B

(

H(s(x)),H(r(x))
)

by

π̄([b]) = π(b).

Now we define π̂′ : BI → End(G(0) ∗ H ) by π̂′([b]) =
(

r(b), π̄([b]), s(b)
)

where

π̄([b]) =

{

π(b) if p(b) ∈ G|F , and

0 otherwise.

It is immediate that if f ∈ Γc(G;B), then x 7→ π̂′(q(f)(x)) is Borel. Since any
f̄ ∈ Γc(G;BI) is the uniform limit of sections of the form q(f) with f ∈ Γc(G;B),
it follows that x 7→ π̂′(f̄(x)) is Borel for all f̄ ∈ Γc(G;BI). Note that since F , and
hence N = G(0) \ F , are saturated, G is the disjoint union of the restrictions G|F
and G|N . Therefore, π̄([a][b]) = π̄([a])π̄([b]) if ([a], [b]) ∈ (BI)(2). Similarly, axioms
(a) and (c) of [23, Definition 4.5] are clearly satisfied and π̂′ is a Borel ∗-functor on
BI . Furthermore,

(

µ,G(0) ∗H , π̂′
)

is a strict representation of BI , and since G|F
is ν-conull, it follows from the Equation (4.4) in [23] that the integrated form L′

satisfies L = L′ ◦ q. In particular, ker q ⊂ kerL in this case.

Case I 6⊂ kerπL. In this case, there is a a ∈ I such that πL(a) 6= 0. Since L
is nondegenerate, there is a f ∈ Γc(G;B) such that πL(a)L(f) 6= 0. But then
L(iA(a)f) 6= 0. However,

(iA(a)f)(x) = a(r(x))f(x) ∈ I(r(x))B(x) = B(x)I(s(x)) = BI(x).

Therefore iA(a)f ∈ Ex(I), and

Ex(I) 6⊂ kerL

in this case. This completes the proof. �
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