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C∗-Algebras Associated with
Mauldin–Williams Graphs

Marius Ionescu and Yasuo Watatani

Abstract. A Mauldin–Williams graph M is a generalization of an iterated function system by a directed

graph. Its invariant set K plays the role of the self-similar set. We associate a C∗-algebra OM(K) with

a Mauldin–Williams graph M and the invariant set K , laying emphasis on the singular points. We

assume that the underlying graph G has no sinks and no sources. If M satisfies the open set condition

in K , and G is irreducible and is not a cyclic permutation, then the associated C∗-algebra OM(K) is

simple and purely infinite. We calculate the K-groups for some examples including the inflation rule

of the Penrose tilings.

1 Introduction

Self-similar sets are often constructed as the invariant set of iterated function systems

[2,13,19]. Many other examples, such as the inflation rule of the Penrose tilings, show

that graph directed generalizations of iterated function systems are also interesting,

and these have been developed as Mauldin–Williams graphs [3, 11, 23]. Since we can

regard graph directed iterated function systems as dynamical systems, we expect that

fruitful connections exist between Mauldin–Williams graphs and C∗-algebras.

[14] Ionescu defined a C∗-correspondence X for a Mauldin–Williams graph M

and showed that the Cuntz–Pimsner algebra OX (see [12, 29]) is isomorphic to the

Cuntz–Krieger algebra OG [8] associated with the underlying graph G. In particu-

lar, if the Mauldin–Williams graph has one vertex and N edges, the Cuntz–Pimsner

algebra OX is isomorphic to the Cuntz algebra ON [7], which recovers a result in

[30]. The construction is useful because it gives many examples of different non-

self-adjoint algebras which are not completely isometrically isomorphic, but have the

same C∗-envelope [25] as shown by Ionescu [15].

On the other hand, Kajiwara and Watatani [17] introduced C∗-algebras associ-

ated with rational functions including singular points, i.e., branched points. They

developed the idea to associate C∗-algebras with self-similar sets considering singular

points [16]. In this paper we associate another C∗-algebra OM(K) with a Mauldin–

Williams graph M and its invariant set K putting emphasis on the singular points

as above. We show that the associated C∗-algebra OM(K) is not isomorphic to the

Cuntz–Krieger algebra OG for the underlying graph G in general. This comes from

the fact that the singular points cause the failure of the injectivity of the coding by

the Markov shift for G. We assume that the underlying graph G has no sinks and no

sources. We show that the associated C∗-algebra OM(K) is simple and purely infinite

if M satisfies the open set condition in K , and if G is irreducible and is not a cyclic
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permutation. We calculate the K-groups for some examples including the inflation

rule of the Penrose tilings. The C∗-algebras associated with tilings were first studied

by Connes [6] and were also discussed by Mingo [24] and Anderson and Putnam [1],

but we do not know the exact relation between their constructions and ours.

Our construction has a common flavor with several topological generalizations of

graph C∗-algebras [5, 18, 21, 26, 27]. Since graph directed iterated function systems

are sometimes obtained as continuous cross sections of expanding maps, C∗-algebras

associated with interval maps introduced by Deaconu and Shultz [9] are closely re-

lated with our construction. From a different point of view, Bratteli and Jorgensen

studied a relation between iterated function systems and representation of Cuntz al-

gebras [4].

2 Mauldin–Williams Graphs and the Associated C∗-Correspondence

By a Mauldin–Williams graph we mean a system M = (G, {Tv, ρv}v∈E0 , {φe}e∈E1 ),

where G = (E0, E1, r, s) is a graph with a finite set of vertices E0, a finite set of edges E1,

a range map r, and a source map s, and where {Tv, ρv}v∈E0 and {φe}e∈E1 are families

such that:

(i) each Tv is a compact metric space with a prescribed metric ρv, v ∈ E0;

(ii) for e ∈ E, φe is a continuous map from Tr(e) to Ts(e) such that

c ′ρr(e)(x, y) ≤ ρs(e)(φe(x), φe(y)) ≤ cρr(e)(x, y)

for some constants c ′, c satisfying 0 < c ′ < c < 1 (independent of e) and all

x, y ∈ Tr(e).

We shall also assume that the source map s and the range map r are surjective. Thus,

we assume that there are no sinks and no sources in the graph G.

In the particular case when we have only one vertex and N edges, we obtain a

so-called iterated function system (K, {φi}i=1,...,N ).

An invariant list associated with a Mauldin–Williams graph

M = (G, {Tv, ρv}v∈E0 , {φe}e∈E1 )

is a family (Kv)v∈E0 of compact sets such that Kv ⊂ Tv for all v ∈ E0, and such that

Kv =
⋃

e∈E1

s(e)=v

φe(Kr(e)).

Since each φe is a contraction, M has a unique invariant list (see [23, Theorem 1]).

We set T :=
⋃

v∈E0 Tv and K :=
⋃

v∈E0 Kv, and we call K the invariant set of the

Mauldin–Williams graph.

In the particular case when we have one vertex v and N edges, i.e., in the setting of

an iterated function system, the invariant set is the unique compact subset K := Kv

of T = Tv such that K = φ1(K) ∪ · · · ∪ φN (K).

In this paper we forget about the ambient space T. That is, we consider that the

Mauldin–Williams graph is M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ), with K =
⋃

v∈E0 Kv

being the invariant set.
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We say that a graph G = (E0, E1, r, s) is irreducible (or totally connected) if for

every v1, v2 ∈ E0 there is a finite path w such that s(w) = v1 and r(w) = v2. We will

assume in this paper that the graph G = (E0, E1, r, s) is irreducible and not a cyclic

permutation. That is, there exists a vertex v∗ ∈ E0 and two edges e1 6= e2 such that

s(e1) = s(e2) = v∗.

For a natural number m, we define

Em := {w = (w1, . . . , wm) : wi ∈ E1 and r(wi) = s(wi+1) for all i = 1, . . . , m − 1}.

An element w ∈ Em is called a path of length m. We extend s and r to Em by s(w) =

s(w1) and r(w) = r(wm) for all w ∈ Em. We set E∗
=

⋃

m≥1 Em and denote the length

of a path w by l(w). We also define Em(v) := {w ∈ Em : s(w) = v} to be the set

of paths of length m starting at the vertex v and E∗(v) =
⋃

m≥1 Em(v) to be the set of

finite paths starting at v.

The infinite path space is

E∞
= {w = (wn)n≥1 : r(wn) = s(wn+1) for all n ≥ 1},

and the space of infinite paths starting at a vertex v is

E∞(v) = {w ∈ E∞ : s(w) = s(w1) = v}.

On E∞(v) we define the metric δv(α, β) = cl(α∧β) if α 6= β and 0 otherwise, where

α ∧ β is the longest common prefix of α and β (see [10, Page 116]). Then E∞(v) is a

compact metric space, and, since E∞ equals the disjoint union of the spaces E∞(v),

E∞ is a compact metric space in a natural way. For w ∈ Em, let φw = φw1
◦ · · · ◦

φwm
and Kw = φw(Kr(w)). Then for any infinite path α = (αn)n∈N,

⋂

n≥1 K(α1,...,αn)

contains only one point. Therefore we can define a map π : E∞ → K by {π(α)} =
⋂

n≥1 K(α1,...,αn). Since π(E∞) is also an invariant set, we have that π(E∞) = K . Thus

π is a continuous onto map. Moreover, for any y ∈ Kv0
and any neighborhood

U ⊂ Kv0
of y, there exist n ∈ N and w ∈ En(v0) such that

y ∈ φw(Kr(w)) ⊂ U .

We say that a Mauldin–Williams graph M satisfies the open set condition in K if

there exists a family of non-empty sets (Vv)v∈E0 such that Vv ⊂ Kv for all v ∈ E0, and

such that

⋃

e∈E1

s(e)=v

φe(Vr(e)) ⊂ Vv for all v ∈ E0,

φe(Vr(e))
⋂

φ f (Vr( f )) = ∅ if e 6= f .

Then V :=
⋃

v∈E0 Vv is an open dense subset of K . Moreover, for n ∈ N and w, v ∈
En, if w 6= v and r(w) = r(v) then φw(Vr(w))

⋂

φv(Vr(v)) = ∅.

For e ∈ E1, we define the cograph of φe to be the set

cograph(φe) = {(x, y) ∈ Ks(e) × Kr(e) : x = φe(y)} ⊂ K × K.
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We shall consider the union

G = G({φe : e ∈ E1}) :=
⋃

e∈E1

cograph(φe).

Consider the C∗-algebra A = C(K), and let X = C(G). Then X is a C∗-correspon-

dence over A with the structure defined by the formulae

(a · ξ · b)(x, y) = a(x)ξ(x, y)b(y),

〈ξ, η〉A(y) =

∑

e∈E1

y∈Kr(e)

ξ(φe(y), y)η(φe(y), y),

for all a, b ∈ A, ξ, η ∈ X, (x, y) ∈ G and y ∈ K . It is clear that the A-valued inner

product is well defined. The left multiplication is given by the ∗-homomorphism

Φ : A → L(X) such that (Φ(a)ξ)(x, y) = a(x)ξ(x, y) for a ∈ A and ξ ∈ X. Put

‖ξ‖2 = ‖〈ξ, ξ〉A‖1/2
∞ .

For any natural number n, we define Gn = G({φw : w ∈ En}) and a C∗-correspon-

dence Xn = C(Gn) similarly. We also define a path space Pn of length n by

Pn =
{

(φw1 ,...,wn
(y), φw2,...,wn

(y), . . . , φwn
(y), y) ∈ Kn+1 :

w = (w1, . . . , wn) ∈ En, y ∈ Kr(w)

}

.

Then Yn := C(Pn) is a C∗-correspondence over A with an A-valued inner product

defined by

〈ξ, η〉A(y) =

∑

w∈En

y∈Kr(w)

ξ(φw1,...,wn
(y), . . . , φwn

(y), y)η(φw1,...,wn
(y), . . . , φwn

(y), y),

for all ξ, η ∈ Yn and y ∈ K .

Proposition 2.1 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph.

Let K be the invariant set. Then X = C(G) is a full C∗-correspondence over A = C(K)

without completion. The left action Φ : A → L(X) is unital and faithful. Similar

statements hold for Yn = C(Pn).

Proof For any ξ ∈ X we have

‖ξ‖∞ ≤ ‖ξ‖2 =

(

sup
y∈K

∑

e∈E1

y∈Kr(e)

|ξ(φe(y), y)|2
) 1/2

≤
√

N‖ξ‖∞,

where N is the number of edges in E1. Therefore the norms ‖ · ‖2 and ‖ · ‖∞ are

equivalent. Since C(G) is complete with respect to ‖ · ‖∞, it is also complete with

respect to ‖ · ‖2.
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Let ξ ∈ X be defined by the formula

ξ(x, y) =
1

√

#(e : y ∈ Kr(e))
for all (x, y) ∈ G.

Then 〈ξ, ξ〉A(y) = 1, hence 〈X, X〉A contains the identity of A. Therefore X is full.

If a ∈ A is not zero, then there exists x0 ∈ K such that a(x0) 6= 0. Since K is the

invariant set of the Mauldin–Williams graph, there exists e ∈ E1 and y0 ∈ Kr(e) such

that x0 ∈ Ks(e) and φe(y0) = x0. Choose ξ ∈ X such that ξ(x0, y0) 6= 0. Then

Φ(a)ξ 6= 0, hence Φ is faithful. The statements for Yn are similarly proved.

Definition 2.2 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph

with the invariant set K . We associate a C∗-algebra OM(K) to M as the Cuntz–

Pimsner algebra OX of the C∗-correspondence X = C(G) over the C∗-algebra A =

C(K).

As in [16], we denote by O
op
X the ∗-algebra generated algebraically by A and Sξ

with ξ ∈ X. The gauge action is γ : R → Aut OX defined by γt (Sξ) = eitSξ for all

ξ ∈ X, and γt(a) = a for all a ∈ A.

Proposition 2.3 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph.

Assume that K is the invariant set of the graph. Then there is an isomorphism
ϕn : X⊗n → C(Pn), as C∗-correspondences over A, such that

(ϕn(ξ1 ⊗ · · · ⊗ ξn))(φw1,...,wn
(y), . . . , φwn

(y), y)

= ξ1(φw1,...,wn
(y), φw2 ,...,wn

(y))ξ2(φw2 ,...,wn
(y), φw3,...,wn

(y)) · · · ξn(φwn
(y), y)

for all ξ1, . . . , ξn ∈ X, y ∈ K, and w = (w1, . . . , wn) ∈ En such that y ∈ Kr(wn).

Moreover, let ρn : Pn → Gn be an onto continuous map such that

ρn(φw1 ,...,wn
(y), . . . , φwn

(y), y) = (φw1 ,...,wn
(y), y).

Then ρ∗n : C(Gn) ∋ f → f ◦ ρn ∈ C(Pn) is an embedding as a Hilbert submodule

preserving inner product.

Proof It is easy to see that ϕn is well-defined and a bimodule morphism. We show

that ϕn preserves the inner product. Consider the case when n = 2 for simplicity of

notation. Let ξ1, ξ2, η1, η2 ∈ X. We have

〈ξ1 ⊗ ξ2,η1 ⊗ η2〉A(y)

= 〈ξ2, 〈ξ1, η1〉A · η2〉A(y)

=

∑

e∈E
y∈Kr(e)

ξ2(φe(y), y)〈ξ1, η1〉A(φe(y))η2(φe(y), y)

=

∑

f e∈E2

y∈Kr(e)

ξ1(φ f e(y), φe(y))ξ2(φe(y), y)η1(φ f e(y), φe(y))η2(φe(y), y)

= 〈ϕ2(ξ1 ⊗ ξ2), ϕ2(η1 ⊗ η2)〉A(y).
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Since ϕn preserves the inner product, it is one to one. Using the Stone-Weierstrass

Theorem, one can show that ϕn is also onto. The rest is clear.

We let in,m : C(Pn) → C(Pm) be the natural inner-product preserving embedding,

for m ≥ n.

Definition 2.4 Consider a covering map π : G → K defined by π(x, y) = y for

(x, y) ∈ G. Define the set

B(M) := {x ∈ K : x = φe(y) = φ f (y) for some y ∈ K and e 6= f }.

The set B(M) will be described by the ideal IX := Φ
−1(K(X)) of A. We define a

branch index e(x, y) at (x, y) ∈ G by

e(x, y) := #{e ∈ E1 : φe(y) = x}.

Hence x ∈ B(M) if and only if there exists some y ∈ K with e(x, y) ≥ 2. For x ∈ K
we define

I(x) := {e ∈ E1 : there exists y ∈ K such that x = φe(y)}.

Lemma 2.5 In the above situation, if x ∈ K \ B(M), then there exists an open neigh-

borhood Ux of x satisfying the following.

(i) Ux

⋂

B(M) = ∅.

(ii) If e ∈ I(x), then φ f (φ−1
e (Ux))

⋂

Ux = ∅ for e 6= f , such that r(e) = r( f ).
(iii) If e /∈ I(x), then Ux

⋂

φe(Kr(e)) = ∅.

Proof Let x ∈ K \ B(M). Let v0 ∈ E0 such that x ∈ Kv0
. Since B(M) and

⋃

e /∈I(x) φe(Kr(e)) are closed, and x is not in either of them, there exists an open neigh-

bourhood Wx ⊂ Kv0
of x such that

Wx

⋂

(B(M) ∪
⋃

e /∈I(x)

φe(Kr(e))) = ∅.

For each e ∈ I(x) there exists a unique ye ∈ K with x = φe(ye), since x /∈ B(M).

For f ∈ E1, if r(e) = r( f ) and f 6= e then φ f (ye) 6= φe(ye) = x. Therefore there

exists an open neighborhood V e
x of x such that φ f (φ−1

e (V e
x))

⋂

V e
x = ∅ if f 6= e and

r( f ) = r(e). Let Ux := Wx

⋂

(
⋂

e∈I(x) V e
x ). Then Ux is an open neighborhood of x

and satisfies all the requirements.

Proposition 2.6 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph.

Assume that the system M satisfies the open set condition in K. Then

IX = {a ∈ A = C(K) : a vanishes on B(M)}.

Proof The proof requires only minor modifications from the proof of [16, Proposi-

tion 2.4].

Corollary 2.7 #B(M) = dim(A/IX).

Corollary 2.8 The closed set B(M) is empty if and only if Φ(A) is contained in K(X)

if and only if X is a finitely generated projective right A module.
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3 Simplicity and Pure Infinitness

Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph. Let A = C(K)

and X = C(G). For e ∈ E1 define an endomorphism βe : A → A by

(βe(a))(y) :=

{

a(φe(y)) if y ∈ Kr(e),

0 otherwise,

for all a ∈ A and y ∈ K . We also define a unital completely positive map EM : A → A

by

(EM(a))(y) :=
1

#{e ∈ E1 : y ∈ Kr(e)}
∑

e∈E1

y∈Kr(e)

a(φe(y))

=
1

#{e ∈ E1 : y ∈ Kr(e)}
∑

e∈E1

y∈Kr(e)

βe(a)(y),

for a ∈ A, y ∈ K . For the function ξ0 ∈ X defined by the formula

ξ0(x, y) =
1

√

#{e ∈ E1 : y ∈ Kr(e)}
,

we have EM(a) = 〈ξ0, Φ(a)ξ0〉A and EM(I) = 〈ξ0, ξ0〉A = I. Let D := Sξ0
∈ OM(K).

Lemma 3.1 In the above situation, for a ∈ A, we have that D∗aD = EM(a) and in
particular D∗D = I.

Proof The same as [16, Lemma 3.1].

Definition 3.2 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph.

We say that an element a ∈ A = C(K) is (M, En)-invariant if

a(φα(y)) = a(φβ(y)) for any y ∈ K and α, β ∈ En such that y ∈ Kr(α) = Kr(β).

If a ∈ A is (M, En)-invariant, then a is also (M, En−1)-invariant. Then, as [16, Defi-

nition, p. 11], if a is (M, En)-invariant, we can define

βk(a)(y) := a(φw1
· · ·φwn

(y)), for any w ∈ Ek, such that y ∈ Kr(wn).

Then for any ξ1, . . . , ξn ∈ X and a ∈ A (M, En)-invariant , we have the relation:

aSξ1
· · · Sξn

= Sξ1
· · · Sξn

βn(a).

Lemma 3.3 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph such

that (E0, E1, r, s) is an irreducible graph. For any non-zero positive element a ∈ A and
for every ε > 0 there exists n ∈ N and ξ ∈ X⊗n with 〈ξ, ξ〉A = 1 such that

‖a‖ − ε ≤ S∗ξ aSξ ≤ ‖a‖.
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Proof Let x0 ∈ K be such that ‖a‖ = a(x0). Let v0 ∈ E0 such that x0 ∈ Kv0
. Then

there exists an open neighborhood U0 of x0 in Kv0
such that for any x ∈ U0 we have

‖a‖−ε ≤ a(x) ≤ ‖a‖. Let U1 be an open neighborhood of x0 in Kv0
, and K1 compact

such that U1 ⊂ K1 ⊂ U0. Since the map π : E∞ → K is onto and continuous, there

exists some n1 ∈ N and α ∈ En1 (v0) such that φα(Kr(α)) ⊂ U1. For any vertex v ∈ V ,

since the graph G is irreducible, there exists a path wv ∈ E∗ from r(α) to v. Then

φαwv
(Kv) ⊂ U1. Hence, for each v ∈ V , there is αv ∈ En(v)(v0), for some n(v) ≥ n1,

such that φαv
(Kv) ⊂ U1. For each v ∈ V , define the closed subsets F1,v and F2,v of

K × K by

F1,v = {(x, y) ∈ K × K : x = φα(y), x ∈ K1, y ∈ Kv, α ∈ En(v)(v0)},

F2,v = {(x, y) ∈ K × K : x = φα(y), x ∈ U c
0, y ∈ Kv, α ∈ En(v)(v0)}.

Since F1,v ∩ F2,w = ∅ for all w ∈ V and F1,v ∩ F1,w = ∅ if v 6= w, there exists

gv ∈ C(Gn(v)) such that 0 ≤ gv(x, y) ≤ 1 and

gv(x, y) =

{

1 if (x, y) ∈ F1,v,

0 if (x, y) ∈ ⋃

w∈E0 F2,w ∪ ⋃

w 6=v F1,w.

Since φαv
(Kv) ⊂ U1 for each y ∈ Kv, there exists xy ∈ U1 such that xy = φαv

(y) ∈
U1 ⊂ K1. Therefore

〈gv, gv〉A(y) =

∑

α∈En(v)

y∈Kr(α)

|gv(φα(y), y)|2 ≥ |gv(xy, y)|2 = 1

for all y ∈ Kv. Let n = max{n(v) : v ∈ E0}. We identify X⊗n with C(Pn) as in

Proposition 2.3. We denote in(v),n(ρ∗n(v)(gv)) ∈ C(Pn) also by gv for each v ∈ V . Let

g :=
∑

v∈V gv ∈ C(Pn). Then 〈g, g〉A(y) ≥ 1 for all y ∈ K . Thus b := 〈g, g〉A is

positive and invertible. Let ξ := gb−1/2 ∈ X⊗n. Then

〈ξ, ξ〉A = 〈gb−1/2, gb−1/2〉A = b−1/2〈g, g〉Ab−1/2
= 1A.

For any y ∈ K and any α ∈ En such that y ∈ Kr(α), let x = φα(y). If x ∈ U0, then

‖a‖ − ε ≤ a(x), and, if x ∈ U c
0, then

ξ(φα1 ,...,αn
(y), . . . , φαn

(y), y) = g(x, y)b−1/2(y) = 0.

Therefore

‖a‖ − ε = (‖a‖ − ε)〈ξ, ξ〉A(y)

= (‖a‖ − ε)
∑

α∈En

y∈Kr(α)

|ξ(φα1 ,...,αn
(y), . . . , φαn

(y), y)|2

≤
∑

α∈En

y∈Kr(α)

a(φα(y))|ξ(φα1 ,...,αn
(y), . . . , φαn

(y), y)|2

= 〈ξ, aξ〉A(y) = S∗ξ aSξ(y).

We also have that S∗ξ aSξ = 〈ξ, aξ〉A ≤ ‖a‖〈ξ, ξ〉A = ‖a‖.
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Lemma 3.4 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph.
Assume that K is the invariant set of the graph. For any non-zero positive element a ∈ A

and for any ε > 0 with 0 < ε < ‖a‖, there exists n ∈ N and u ∈ X⊗n such that

‖u‖2 ≤ (‖a‖ − ε)−1/2 and S∗uaSu = 1.

Proof The proof is identical with the proof of [16, Lemma 3.4].

Lemma 3.5 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph.

Suppose that the graph G has no sinks and no sources, and it is irreducible and not a

cyclic permutation. Assume that K is the invariant set of the graph and that M satisfies
the open set condition in K. For any n ∈ N, for any T ∈ L(X⊗n), and for any ε > 0

there exists a positive element a ∈ A such that a is (M, En)-invariant,

‖Φ(a)T‖2 ≥ ‖T‖2 − ε,

and βp(a)βq(a) = 0 for p, q = 1, . . . , n with p 6= q.

Proof Let n ∈ N, let T ∈ L(X⊗n), and let ε > 0. Then there exists ξ ∈ X⊗n such

that ‖ξ‖2 = 1 and ‖T‖2 ≥ ‖Tξ‖2
2 > ‖T‖2 − ε. Hence there exists y0 ∈ Kv0

for some

v0 ∈ V such that

‖Tξ‖2
2 =

∑

α∈En

r(α)=v0

|(Tξ)(φα1 ,...,αn
(y0), . . . , φαn

(y0), y0)|2 > ‖T‖2 − ε.

Then there exists an open neighborhood U0 of y0 in Kv0
such that for any y ∈ U0

∑

α∈En

r(α)=v0

|(Tξ)(φα1,...,αn
(y), . . . , φαn

(y), y)|2 > ‖T‖2 − ε.

Since M satisfies the open set condition in K , there exists a family of non-empty sets

(Vv)v∈E0 , such that Vv ⊂ Kv, for all v ∈ E0,

⋃

e∈E1

s(e)=v

φe(Vr(e)) ⊂ Vv for all v ∈ E0,

φe(Vr(e)) ∩ φ f (Vr( f )) = ∅ if e 6= f .

Then there exists y1 ∈ Vv0
∩ U0 and an open neighborhood U1 of y1 with U1 ⊂

V ∩U0. Moreover, there is some k′ ∈ N and (e1, . . . , ek ′) ∈ Ek ′

(v0) such that

φe1 ,...,ek ′
(Vr(ek ′ )) ⊂ U1 ⊂ Vv0

∩U0.

Since the graph G is not a cyclic permutation, there is a vertex v∗ ∈ E0 and two edges

e ′, e ′ ′ ∈ E1 such that e ′ 6= e ′ ′. Since the graph G is irreducible, there exists a path

from r(ek ′) to v∗. Hence we have a path (e1, . . . , ek) ∈ Ek(v0) for some k ∈ N, k ≥ k′,
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such that r(ek) = v∗ and φe1 ,...,ek
(Vr(ek)) ⊂ U1 ⊂ Vv0

∩ U0. Then we can find a path

(ek+1, . . . , ek+n) ∈ En(v∗) such that ek+1 6= ek+i if i 6= 1. To see this, let ek+1 = e ′.
If r(ek+1) = v∗, take ek+2 = e ′ ′. If r(ek+1) 6= v∗, since G has no sinks, there is an

edge e ∈ E1 such that s(e) = r(ek+1). Then e 6= ek+1. Let ek+2 = e. If r(ek+2) = v∗,

take ek+3 = e ′ ′; if r(ek+2) 6= v∗, take ek+3 to be any edge such that s(ek+3) = r(ek+2).

Therefore ek+3 6= ek+1. Inductively, we obtain the path (ek+1, . . . , ek+n) ∈ En(v∗) with

the desired property. Then

∅ 6= φe1,...,ek+n
(Vr(ek+n)) ⊂ U1 ⊂ Vv0

∩U0.

There exist y2 ∈ U1, an open neighborhood U2 of y2 in Kv0
and a compact set L such

that

y2 ∈ U2 ⊂ L ⊂ φe1 ,...,ek+n
(Vr(ek+n)) ⊂ U1 ⊂ Vv0

∩U0.

Let b ∈ A such that 0 ≤ b ≤ 1, b(y2) = 1 and b|U c
2

= 0. For α ∈ En such that

r(α) = v0, we have

φα(y2) ∈ φα(U2) ⊆ φα(L) ⊆ φα(Vv0
).

Moreover, for α, β ∈ En such that r(α) = r(β) = v0, by the open set condition,

φα(L) ∩ φβ(L) = ∅ if α 6= β.

We define a positive function a on K by the formula

a(x) =

{

b(φ−1
α (x)) if x ∈ φα(L), α ∈ En such that r(α) = v0,

0 otherwise.

Then a is continuous on K , hence a ∈ A. By construction, a is (M, En)-invariant.

Let p ≤ n be a natural number. Let (α1, . . . , αp) ∈ Ep. If there is no path

(αp+1, . . . , αn) ∈ En−p(r(αp)) such that r(αn) = v0, then βαp
. . . βα1

(a) = 0. If there

is at least one path (αp+1, . . . , αn) ∈ En−p(r(αp)) such that r(αn) = v0, then

supp(βαp
· · ·βα1

(a)) ⊆
⋃

(αp+1 ,··· ,αn)∈En−p(r(αp))
r(αn)=v0

φαp+1 ...αn
(supp(b)).

Since supp(b) ⊆ L ⊂ φe1 ...ek+n
(Vr(ek+n)) we have that

supp(βαp
· · ·βα1

(a)) ⊆
⋃

(αp+1 ,...,αn)∈En−p(r(αp))
r(αn)=v0

φαp+1 ···αn
φe1···ek+n

(Vr(ek+n)).

Then, for 1 ≤ p < q ≤ n we have that

supp(βp(a)) ⊆
⋃

(αp+1 ,··· ,αn)∈En−p

r(αn)=v0

φαp+1 ···αn
φe1···ek+n

(Vr(ek+n))
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and

supp(βq(a)) ⊆
⋃

(αq+1,...,αn)∈En−q

r(αn)=v0

φαq+1···αn
φe1···ek+n

(Vr(ek+n)).

Since the (n − p) + (k + 1)-th subsuffixes are different, as ek+1 6= ek+1+(q−p), we have

that supp(βp(a)) ∩ supp(βq(a)) = ∅. Hence βp(a)βq(a) = 0.

Moreover, we have

‖Φ(a)Tξ‖2
2 = sup

y∈K

∑

α∈En

y∈Kr(α)

| (a(φα(y))(Tξ)(φα(y), . . . , φαn
(y), y) |2

= sup
y∈L

∑

α∈En

y∈Kr(α)

| (b(y))(Tξ)(φα(y), . . . , φαn
(y), y) |2

≥
∑

α∈En

y2∈Kr(α)

| (Tξ)(φα(y2), . . . , φαn
(y2), y2) |2

> ‖T‖2 − ε,

because y2 ∈ U0. Thus ‖Φ(a)T‖2 ≥ ‖T‖2 − ε.

As in [16], we let Fn be the C∗-subalgebra of FX generated by K(X⊗k), k =

0, 1, . . . , n, and we let Bn be the C∗-subalgebra of OX generated by

n
⋃

i=1

{Sx1
· · · Sxk

S∗yk
· · · S∗y1

: x1, . . . , xk, y1, . . . , yk ∈ X} ∪ A.

We will also use the isomorphism ϕ : Fn → Bn such that

ϕ(θx1⊗···⊗xk,y1⊗···⊗yk
) = Sx1

· · · Sxk
S∗yk

· · · S∗y1
.

Lemma 3.6 In the above situation, let b = c∗c for some c ∈ O
alg
X . We decompose

b =
∑

j b j with γt(b j) = ei jt b j . For any ε > 0 there exists P ∈ A with 0 ≤ P ≤ I
satisfying the following:

(i) Pb jP = 0 ( j 6= 0);
(ii) ‖Pb0P‖ ≥ ‖b0‖ − ε.

Proof The proof requires only small modifications from the proof of [16, Lemma

3.6].

Having proved the equivalent of the [16, Lemma 3.1–Lemma 3.6], we obtain, us-

ing the same proof as [16, Theorem 3.7], the corresponding result for the Mauldin–

Williams graph.

Theorem 3.7 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph.

Suppose that the graph G has no sinks and no sources, is irreducible, and is not a cyclic
permutation. Assume that K is the invariant set of the Mauldin–Williams graph and

that M satisfies the open set condition in K. Then the associated C∗-algebra OM(K) is

simple and purely infinite.
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Using the same argument as in [16, Proposition 3.8], one can show that OM(K)

is separable and nuclear and satisfies the universal coefficient theorem. Thus, by the

classification theorems of Kirchberg and Phillips [20, 28], the isomorphism class of

OM(K) is completely determined by the K-theory with the class of the unit.

4 Examples

We will compute the K-groups of the C∗-algebra associated with a graph

G = (E0, E1, r, s) using the fact that K1(C∗(G)) is isomorphic to the kernel of

1 − At
G : Z

E0 → Z
E0

, and K0(C∗(G)) is isomorphic to the cokernel of the same map,

where AG is the vertex E0 × E0 matrix defined by

AG(v, w) = #{e ∈ E1 : s(e) = v and r(e) = w}.

For the K-groups of the Cuntz–Pimsner algebras we will use the following six-term

exact sequence due to Pimsner [29] (see also [16, §4]):

K0(IX)
id −[X]

// K0A
i∗

// K0(OM(K))

δ0

��

K1(OM(K))

δ1

OO

K1(A)
i∗

oo K1(IX)
id −[X]

oo

First we give a condition, which is similar to the one in [16, §4], that implies that

the associated C∗-algebra OM(K) is isomorphic to the C∗-algebra associated with the

underlying graph.

Definition 4.1 We say that a Mauldin–Williams graph

M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 )

satisfies the graph separation condition in K if K is the invariant set of the Mauldin–

Williams graph and cograph(φe) ∩ cograph(φ f ) = ∅ if e 6= f .

Proposition 4.2 Let M = (G, {Kv, ρv}v∈E0 , {φe}e∈E1 ) be a Mauldin–Williams graph

which satisfies the graph separation condition. Then the associated C∗-algebra is iso-

morphic to the C∗-algebra associated with the underlying graph G.

Proof Let E1 ×G K = {(e, x) | x ∈ Kr(e)}. Let X be the C∗-correspondence over A =

C(K) associated in [14] with a Mauldin–Williams graph. That is, X = C(E1 ×G K)

with the operations given by the formulae:

ξ · a(e, x) := ξ(e, x)a(x), a · ξ(e, x) := a ◦ φe(x)ξ(e, x),

where a ∈ C(K) and ξ ∈ X, and

〈ξ, η〉A(x) :=
∑

e∈E1

x∈Kr(e)

ξ(e, x)η(e, x),
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for ξ, η ∈ X. It was proved in [14, Theorem 2.3] that the Cuntz–Pimsner algebra as-

sociated with this C∗-correspondence is isomorphic to the Cuntz–KriegerC∗-algebra

C∗(G) of the underlying graph G. We will show that if the Mauldin–Williams graph

satisfies the graph separation condition, then X and X are isomorphic as C∗-cor-

respondences in the sense of [26].

Let V : X → X defined by the formula (Vξ)(e, x) = ξ(φe(x), x) for all (e, x) ∈
E1 ×G K . Then

(V (a · ξ · b))(e, x) = (a · ξ · b)(φe(x), x)

= a(φe(x))ξ(φe(x), x)b(x) = (a ·V (ξ) · b)(e, x),

for all a, b ∈ A and ξ ∈ X. Also

〈V (ξ),V (η)〉A(x) =

∑

e∈E1

x∈Kr(e)

V (ξ)(e, x)V (η)(e, x)

=

∑

e∈E1

x∈Kr(e)

ξ(φe(x), x)η(φe(x), x) = 〈ξ, η〉A(x),

for all ξ, η ∈ X. Finally, let η ∈ X. For (y, x) ∈ G, since M satisfies the graph

separation condition, there is a unique e ∈ E1 such that y = φe(x). Define ξ ∈ X by

the formula ξ(y, x) = η(e, x) for all (y, x) ∈ G. Then ξ is well defined and V (ξ) = η,

hence V is onto. Thus V is a C∗-correspondence isomorphism. Therefore OM(K) is

isomorphic to C∗(G).

Example 4.3 (The two-part dust) Let G be the graph from the figure

Let T1, T2 ⊂ R
2 be two disjoint compact sets such that K1 contains the origin, K2

contains (0, 1), and K1 and K2 are symmetric about the x-axis. Let {φi}i=1,...,4 be

similarities, such that the map φ1 has ratio 1/2, fixed point (0, 0), and rotation 30

degrees counterclockwise. The map φ2 has ratio 1/4, fixed point (1, 0), and rotation

60 degrees clockwise. The map φ3 has ratio 1/2, fixed point (0, 0) and rotation 90

degrees counterclockwise. The map φ4 has ratio 3/4, fixed point (1, 0), and rotation

120 degrees clockwise (see [10, p. 167] for more details). Then the Mauldin–Williams

graph M satisfies the graph separation condition, hence OM(K) is isomorphic to

C∗(G).

One can see that any Mauldin–Williams graph associated with this graph G will

satisfy the graph separation condition, hence the associated Cuntz–Pimsner algebra

will be isomorphic to C∗(G).

Example 4.4 Let G = (E0, E1, r, s) be the graph with the vertex matrix AG

AG =

[

3 1

1 3

]

.



558 M. Ionescu and Y. Watatani

Hence K1(C∗(G)) = 0 and K0(C∗(G)) ≃ Z/3Z. Let K1 and K2 be two copies of the

square of length one with the maps {φi}i=1,...,8 as in the following diagram:

A B

C
D

O

K1 K2

φ1

φ2

φ3

E F

GH

φ4

φ5

φ6

φ7

φ8

P

That is, {φi}i=1,...,8 are similarities, φ1, φ2, φ3 : K1 → K1, φ4 : K1 → K2, φ5 :

K2 → K1, φ6, φ7, φ8 : K2 → K2, such that φ1(A) = A, φ1(C) = φ2(C) = O,

φ2(A) = C, φ3(D) = D, φ3(B) = O, φ4(A) = E, φ4(C) = P, φ5(F) = B, φ5(H) = 0,

φ6(F) = P, φ6(H) = H, φ7(F) = F, φ7(H) = P, φ8(E) = P, φ8(G) = G. Then

K = K1 ⊔ K2 is the invariant set of the Mauldin–Williams graph and B(M) = {O}.

So A = C(K1) ⊕ C(K2), IX = C0(K1 \ {O}) ⊕ C(K2). Then K1(OM(K)) ≃ 0 and

K0(OM(K)) ≃ Z/2Z. Therefore K0(OM(K)) is not isomorphic to K0(C∗(G)). Thus

OM(K) is not isomorphic to C∗(G).

Example 4.5 (Penrose tiling) The tiles of the Penrose tiling are two triangles such

that the angles of the first triangle are equal to π
5
, 2π

5
, 2π

5
and the angles of the second

triangle are equal to 3π
5
, π

5
, π

5
. These triangles are cut from a rectangular pentagon by

the diagonals issued from a common vertex. Hence the ratio between the lengths of

the shorter and the longer sides of the triangles is equal to τ =
1+

√
5

2
. The Mauldin–

Williams graph associated with the Penrose tiling is given in the following diagram,

as shown in [3]:
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Then the invariant set K of this Mauldin–Williams graph is the union of the two

triangles. The vertex matrix of the graph is

AG =

[

2 1

1 1

]

,

hence K0(C∗(G)) = K1(C∗(G)) = 0. Since K0(OM(K)) ≃ Z and K1(OM(K)) = 0,

OM(K) is not isomorphic to C∗(G).
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