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An integer-valued polynomial is a function from
the integers to the integers that is given by a
polynomial.



Ex: The number of (vertex-)colorings of a given
graph (so that vertices connected by an edge
have different colors), using a set of k colors, is
a polynomial in k.

Proof: f (Kn, k) = k(k−1)(k−2) · · · (k−n+1).

So f (G, k) has integer coefficients, leading coef-
ficient 1, and degree |V (G)|.



Ex: F a field, x1, x2, . . . , xn indeterminates
(variables). Dimension of the F -v.s. of all poly-
nomials of total degree k is

k + n− 1

n− 1



(In k + n − 1 positions to be filled with either
“another of the same variable” or “switch to a
new variable”, pick the second n− 1 times.)

So

dimF


F [x1, x2, . . . , xn]

polynomials of degree > n

 =


k + n

n



— coefficients are integers over n!, leading coef-
ficient is 1/n!, and degree is n.



Lagrange Interpolation: a1, a2, . . . , an dis-
tinct, any r1, r2, . . . , rn:

f (X) =
n∑

j=1
rj

∏
i 6=j

X − ai

aj − ai
.

has f (ai) = ri (and is unique of degree at most n)

So if the ai’s are consecutive integers, the de-
nominator is (no worse than) (n− 1)!.

In fact, it’s better to write an integer-valued
polynomial, not in powers of k, but in the “bi-
nomial coefficient” functions

k + n− 1

n

 = Bn(k) :

B0(k) = 1 , B1(k) = k , B2(k) =
1

2
k(k+1) , . . .

P (k) = e0B0(k) + e1B1(k) + . . . + edBd(k)

where the ei’s are integers and d = deg(P )



From

Bn(k + 1)−Bn(k) = Bn−1(k + 1)

we get

P (k + 1)− P (k)

= e1B0(k + 1) + e2B1(k + 1)

+ . . . + edBd−1(k + 1)

Repeating this, we can get ed, then subtract
edBd(k) and repeat to find the other ei’s. (Ex-
ample shortly.)

Def: R is Noetherian if (1) every ideal is fin
gen; or (2) every ( 6= ∅) set of ideals has max
elts.

R Noetherian, M max ideal, I M -primary ideal
(contains a power of M). Then

length(R/Ik) = HI(k)

is a polynomial in k for k >> 0.







But the polynomial may not kick in immedi-
ately:

Ex: R = F [x, y], M = (x, y), I = (x5, x3y2, y5):

k 1 2 3 4 5 6

H(k) 19 61 127 217 332 472

1st diffs H(k + 1)−H(k) 42 66 90 115 140

2nd diffs 24 24 25 25

H(k)− 25B2(k) −6 −14 −23 −33 −43 −53

1st diffs −8 −9 −10 −10 −10

H(k)− (25B2(k)− 10B1(k)) 4 6 7 7 7 7

H(k)− (25B2(k)− 10B1(k) + 7B0(k)) −3 −1 0 0 0 0

So HI(k) = 7B0(k) − 10B1(k) + 25B2(k) for
k ≥ 3.

Notation:

HI(k) = e0(I)B0(k) + e1(I)B1(k)

+ · · · + ed(I)Bd(k)

(reverses the usual).

First k s.t. HI agrees with the polynomial is
the postulation number of I .



Notation: I : J = {r ∈ R | rJ ⊆ I}

Ratliff and Rush: R Noetherian, I contains a
nonzerodivisor. Then

Ĩ =
⋃{Ik+1 : Ik | k ≥ 1}

is largest ideal ⊇ I s.t. (Ĩ)k = Ik for k >> 0
(so HĨ(k) = HI(k) for k >> 0,

so ej(Ĩ) = ej(I) for j = 0, 1, . . . , d).

K. Shah: R Noeth, only 1 max M (dim d > 0 q-
unmixed, R/M inf), I M -primary. Then there
is a largest ideal I{s} ⊇ I s.t.

ej(I{s}) = ej(I)

for j = s, s + 1, . . . , d
(so Ĩ = I{0} and I{d} is the “integral closure”
of I , the largest ideal ⊇ I with the same “mul-
tiplicity” ed).



Elias: Pick a “minimal reduction” a1, a2, ..., ad
of I (ai ∈ I , aIk = Ik+1 for k >> 0). Then
Ĩ = Ik+1 : (ak

1 , a
k
2 , . . . , a

k
d) if

k ≥ 1+max{pn(I), pn(I/(a1)), . . . , pn(I/(ad))} .

Moreover, if

f (e, d) :=


e− 1 if d = 1

e2(d−1)!−1(e− 1)(d−1)! if d > 1

then Ĩ = Ik+1 : Ik for

k ≥ (d + 1)(f (ed(I), d) + 2) .

For d = 2 and e2(I) = 49, the bound is 7062.
I had the computer check all the monomial ide-
als in F [x, y] with minimal reduction x7, y7,
and none needed a k > 4.
It’s a long way from 4 to 7062. Is there a theo-
rem here?

For more on coefficient ideals, see Shah, or sev-
eral papers by Heinzer, L., Johnston and Shah
(in various combinations).



Def: D a(n integral) domain (comm, with 1),
F its frac field.

Int(D) = {g(x) ∈ F [x] | g(d) ∈ D ∀ d ∈ D}



Lemma: f (x) ∈ Int(D), deg d, a0, a1, . . . , ad ∈
D,

p =
∏

i<j
(aj − ai) .

Then pf (x) ∈ D[x].

Pf: 

1 a0 a2
0 . . . ad

0

1 a1 a2
1 . . . ad

1

... ... ... ... ...

1 ad a2
d . . . ad

d





f ′s

c
o
e
f
f
s



=



f (a0)

f (a1)

...

f (ad)



.

Van der Monde and Cramer. //

Cor: If M max ideal of D with D/M inf, then

Int(D) ⊆ DM [x] .

Pf: Pick ai’s from diff cosets of M ;
then p /∈ M . //



Prop: S ⊆ D − {0} cl under mult:

S−1(Int(D)) ⊆ Int(S−1D) ,

and if D is Noeth, reverse also.

Defs: D domain:
(1) D valuation if, ∀ a, b ∈ D−{0}, a/b ∈ D

or b/a ∈ D. (So the nonunits form the only
max ideal.)

(2) D Prüfer if DM is valuation ∀M max.
(3) D Dedekind if Prüfer and Noetherian.

Brizolis; McQuillan; Chabert: If D Dedekind
with all D/M finite, then Int(D) is Prüfer of
dimension 2.

E.g.: M max in D, a ∈ D:

0 ⊆ {f ∈ Int(D) | f (a) = 0}
⊆ {f ∈ Int(D) | f (a) ∈ M} .

Gilmer, Heinzer and L.: D 1-dim Noeth.
Then Int(D) is Noeth iff it is D[x].



Defs: D ⊆ R domains:
(1) r ∈ R is integral over D if r is a root an

elt of D[x] with leading coeff 1.
(2) Integral closure of D in R is all integral

elements.
(3) Integral closure of D is its int cl in its

frac field.

Ex: K algebraic extension of IQ: Integral clo-
sure of ZZ in K is the ring of algebraic integers
in K.
(If [K : IQ] < ∞, it’s Dedekind with finite
residue fields.)



Cahen, Chabert and Frisch: D is an interpola-
tion domain iff, given a1, a2, . . . , an ∈ D dis-
tinct, any r1, r2, . . . , rn ∈ D, ∃ f (x) ∈ Int(D)
s.t. f (ai) = ri ∀ i.

Must have Int(D) 6= D[x], to send 0 to 0 and
nonunit to 1.

[CC] D val dom, M max:
Int(D) 6= D[x] iff M principal and D/M fin.

[CCF] D Noeth or Prüfer and an interp dom:
all rings between D and its frac field are interp,
too.



Building an interp dom whose int cl isn’t an
interp dom:

Ordered additive subgroup of IQ:
G = {a/2k | a ∈ ZZ, k ∈ IN}

R = set of finite sums ∑
g∈G bgt

g where g ∈
G, bg ∈ ZZ/(2) (almost all b’s 0). An element
6= 0 of R has an “order”: smallest g s.t. bg 6=
0. Elements of frac field F of R get orders by
subtracting.

V , set of elts of F with “order” ≥ 0, is val dom.
Divisibility looks like G — no smallest positive,
so max ideal isn’t principal: Int(V ) = V [x], so
V isn’t an interp dom.



By long division, elements of F are “Laurent
series”, and exponents have a common denom-
inator:



Additive submonoid of G:

S =


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

D = Laurent series with all exponents in S.
Then
F is frac field of D,
V is int cl of D (because (a + b)2 = a2 + b2),
D has ideals (tails of the series) Is s.t.

Is decreases to (0) as s →∞,
D/Is is finite.



For d ∈ D, d 6= 0, d /∈ Is for some s ∈ S.
Define polynomial so d + Is 7→ 1, Is 7→ 0.
Finish as in Lagrange interp [CCF].
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