Section 1.5: The Fundamental Theorem of Arithmetic and consequences

Proposition 1.18 Let a be a natural and $n>1$. Using the FTA there is a unique string of primes $p_{1}<p_{2}<\ldots<p_{r}$ and naturals $k_{1}, k_{2}, \ldots, k_{r}$ with

$$
n=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \ldots p_{r}{ }^{k_{r}} .
$$

A natural number d is a divisor of n if and only if d can be expressed in the form

$$
d=p_{1}{ }^{l_{1}} p_{2}{ }^{l_{2}} \ldots p_{r}^{l_{r}}
$$

where $0 \leq l_{1} \leq k_{1} ; 0 \leq l_{2} \leq k_{2} ; \ldots ; 0 \leq l_{r} \leq k_{r}$.
NB. This theorem characterizes all divisors of n in terms of the prime factorization of n.
Theorem 1.19 Let a and b be natural numbers with $a>1$ and $b>1$. Using the FTA, write $a=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \ldots p_{r}{ }^{k_{r}}$ and $b=q_{1}{ }^{l_{1}} q_{2}^{l_{2}} \ldots q_{s}{ }^{l_{s}}$. Let $P_{1}<P_{2}<\ldots<P_{t}$ denote the primes $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{s}$ combined [without repetition] and listed in increasing order. With this we can rewrite $a=P_{1}{ }^{k_{1}} P_{2}{ }^{k_{2}} \ldots P_{t}^{k_{t}}$ and $b=P_{1}^{l_{1}} P_{2}^{l_{2}} \ldots P_{t}^{l_{t}}$ where some of the exponents listed may be zero.
With the notation as above $(a, b)=P_{1}{ }^{m_{1}} P_{2}{ }^{m_{2}} \ldots P_{t}^{m_{t}}$ where each $m_{i}=\min \left(k_{i}, l_{i}\right)$.
NB. The first part of the statement of the theorem is meant to 'fill out' the prime factorizations for a and b with trivial factors of 1 [ie primes to the power 0] so that we can combine associated exponents in the conclusion of the theorem. This theorem tells us how to compute the gcd of a and b using their prime factorizations.

Why are we not concerned with $a=1$ or $b=1$ [or negative integers for that matter]?
Definition Let $n>1$. We say n is square-free if the only perfect square dividing n is 1 .

