Group Assignment 3

Heather Clark, Shirley Han, Claudia Melniciuc, Kellen Myers

12.3) Let G be an abelian group, let n be a positive integer, and let $\varphi : G \to G$ be given by $\varphi(x) = x^n$. Show that φ is a homomorphism. Need it be a monomorphism? An epimorphism?

 $\varphi(x y) = (x y)^n = x^n y^n = \varphi(x) \varphi(y)$ And thus φ is a homomorphism (an automorphism in fact).

 φ is not necessarily monomorphic or epimorphic. It can be (take n = 1), but it doesn't have to be. For example, n = 4 when $G = (\mathbb{Z}_8, +)$ defines neither an epimorphism nor a monomorphism. There is no $g \in \mathbb{Z}_8$ such that $\varphi(g) = 4g = 3$. The image of G under φ is actually only $\{0, 4\}$. So φ is not an epimorphism. Also $\varphi(0) = 0 = \varphi(2)$, so φ is not a monomorphism.