Group Assignment 4.nb

Group Assignment 4

Heather Clark, Brian Dinneen, Shirley Han, Kellen Myers

13.13 Let $A \triangleleft G$ and $B \triangleleft H$. Must it be true that $\frac{G \times H}{A \times B} \simeq \frac{G}{A} \times \frac{H}{B}$? Either prove that it must or give a counterexample.

Consider $\varphi: G \times H \to \frac{G}{A} \times \frac{H}{B}$

defined naturally by $\varphi(g, h) = (A g, B h)$

Clearly, φ is onto, as the domain of φ admits every g, h pair, which in turn define all possible pairs of right cosets.

Also, $\varphi(g_1 g_2, h_1 h_2) = (A g_1 g_2, B h_1 h_2) = (A g_1 A g_2, B h_1 B h_2) = (A g_1, B h_1) (A g_2, B h_2) = \varphi(g_1, h_1) \varphi(g_2, h_2)$ So φ is a homomorphism

Let
$$(g, h) \in A \times B$$

so $(g, h) (e_h)$

so $(g, h) (e_G, e_H)^{-1} \in A \times B$ and thus

 $(g e_G^{-1}, h e_H^{-1}) \in A \times B$

So $\varphi(g, h) = (A g, B h) = (A e_G, B e_H) = e_{\frac{G}{A} \times \frac{H}{B}}$

Thus $(g, h) \in \ker(\varphi)$

Let $(g, h) \notin A \times B$

So $(A g, B h) \neq (A e_G, B e_H)$

(since either $g \notin A$ and thus $A g \neq A e_G$, or $h \notin B$ and $B h \neq e_H$)

so $\varphi(g, h) = (A g, B h) \neq (A e_G, B e_H)$

So $(g, h) \notin \ker(\varphi)$

Thus $ker(\varphi) = A \times B$

(note: we have just proven an auxilliary result, for $A \triangleleft G$ and $B \triangleleft H$: $A \times B \triangleleft G \times H$)

By the Fundamental theorem of homomorphisms:

$$G \times H / \ker(\varphi) = \frac{G \times H}{A \times B} \simeq \frac{G}{A} \times \frac{H}{B}$$