Exercise 16.24 Submitted by K G Valente

(i) Let R denote the set of Gaussian integers Z[i]. Since Z[i] is a subset of the complex numbers, which form a ring, we need only check two conditions: $(x + yi) - (u + vi) = (x - u) + (y - v)i \in Z[i]$ and $(x + yi)(u + vi) = (xu - yv) + (yu + xv)i \in Z[i]$ for all x + yi, $u + vi \in Z[i]$. With these, Z[i] is a subring of the complexes, and hence a ring.

(ii) Fix a = x + yi and b = u + vi. Then $N(a) = x^2 + y^2$ and $N(b) = u^2 + v^2$. Multiplying gives $N(a)N(b) = (xu)^2 + (yu)^2 + (xv)^2 + (yv)^2$. Now, ab = (xu - yv) + (yu + xv)i. Thus $N(ab) = (xu + yv)^2 + (yu + xv)^2 = (xu)^2 + (yu)^2 + (xv)^2 + (yv)^2$. So N(ab) = N(a)N(b).

(iii) Fix $a \in U(R)$. So ab = 1 for some $b \in R^*$. With this N(a)N(b) = N(ab) = N(1) = 1. Since N(a) and N(b) are integers, we see N(a) must be either 1 or -1.

Now assume $a = x + yi \in R$ with N(a) = 1. Consider $b = x - yi \in R$. One checks $ab = x^2 + y^2 = N(a) = 1$.

Finally, if N(a) = -1, then consider $(-x) + yi \in R$. Then $ab = -(x)^2 - (y)^2 = -N(a) = 1$. Thus, in either case, $a \in U(R)$.

(iv) By (iii) the only units in Z[i] are 1, -1, i, -i. As a multiplicative group, the units are isomorphic to Z_4 as they are generated by i.