Exercise 5.2

Let G be the group of real-valued functions on the real line, under addition of functions. Let H be the set of differentiable functions in G. Show that H is a subgroup of G.

Proof:

Note, $f(x) = x^2 \in H$, so $H \neq \emptyset$.

Let f, $g \in H$. So f' and g' exist.

Thus, (f + g)' = f' + g' so $(f + g) \in H$.

The identity in H is h(x) = 0.

So $f^1 = -f$, and (-f)' = -(f').

So $-f \in H$.

Therefore by Theorem 5.1, $H \le G$.