Let \(H \) be a subgroup of \(G \) and define \(\sim \) on \(G \) by \(x \sim y \) iff \(x^{-1}y \in H \).

a) Show that \(\sim \) is an equivalence relation on \(G \).

i. Let \(x \in G \). (W.T.S.: Reflexivity)
Since \(x^{-1}x = e \) and \(e \in H \), we know \(x^{-1}x \in H \) and \(x \sim x \).

ii. Let \(x \sim y \). (W.T.S.: Symmetry)
Then \(x^{-1}y \in H \).
We know \((x^{-1}y)^{-1} \in H \).
So it then follows that \(y^{-1}x \in H \).

iii. Fix \(x, y, z \in G \) with \(x \sim y \) and \(y \sim z \). (W.T.S.: Transitivity)
So, \(x^{-1}y \in H \) and \(y^{-1}z \in H \).
Then \((x^{-1}y)(y^{-1}z) = x^{-1}z \in H \).
Therefore, \(x \sim z \).

* So \(\sim \) is an equivalence relation on \(G \) because all three properties (reflexivity, symmetry, and transitivity) hold.

b) Show that the equivalence classes under \(\sim \) are the left cosets of \(H \) in \(G \).

We claim: \(xH = \{ y \in G | y \sim x \} = \bar{x} \). From this we want to show that the equivalence class under \(\sim \) are the left cosets of \(H \) in \(G \).

Fix \(y \in \bar{x} \).
Since \(x \sim y \) then \(x^{-1}y = h \) for some \(h \in H \).
Then it follows that \(y = xh \).
So, \(\{ y \in G | y \sim x \} \subseteq \{ xh | h \in H \} = xH \). [We are now halfway done.]

Next, fix \(xh' \in xH \) where \(h' \in H \).
Consider \(x^{-1}(xh') = h' \in H \).
So \(x \sim xh' \).
Then \(xh' \in \bar{x} \).
Thus, \(xH = \bar{x} = \{ y \in G | y \sim x \} \).

* Therefore, the equivalence classes under \(\sim \) are the left cosets of \(H \) in \(G \).