9.13 - Group 4: K Hwang, L Jones, L Kenny, A Leeman, C Ozor

Let *H* be a subgroup of *G* and define $_{H^{\sim}}$ on *G* by $x_{H^{\sim}}y$ iff $x^{-1}y \in H$.

a) Show that H^{\sim} is an equivalence relation on *G*.

- i. Let $x \in G$. (W.T.S.: Reflexivity) Since $x^{-1}x = e$ and $e \in H$, we know $x^{-1}x \in H$ and $x_H \sim x$.
- ii. Let $x_{H} \sim y$. (W.T.S.: Symmetry) Then $x^{-1}y \in H$. We know $(x^{-1}y)^{-1} \in H$. So it then follows that $y^{-1}x \in H$.
- iii. Fix $x, y, z \in G$ with $x_H \sim y$ and $y_H \sim z$. (W.T.S.: Transitivity) So, $x^{-1}y \in H$ and $y^{-1}z \in H$. Then $(x^{-1}y)(y^{-1}z)=x^{-1}z \in H$. Therefore, $x_H \sim z$.

* So $_{H}$ is an *equivalence relation* on G because all three properties (reflexivity, symmetry, and transitivity) hold.

b) Show that the equivalence class under $_{H}$ are the left cosets of H in G.

We claim: $xH=\{y\in G|y_H \sim x\}=\overline{x}$. From this we want to show that the equivalence class under $_{H}\sim$ are the left cosets of H in G.

Fix $y \in \tilde{x}$. Since $x_H \sim y$ then $x^{-1}y = h$ for some $h \in H$. Then it follows that y = xh. So, $\{y \in G | y_H \sim x\} \subseteq \{xh | h \in H\} = xH$. [We are now halfway done.]

Next, fix $xh' \in xH$ where $h' \in H$. Consider $x^{-1}(xh') = h' \in H$. So $x \xrightarrow{H} xh'$. Then $xh' \in \overline{x}$. Thus, $xH = \overline{x} = \{y \in G | y \xrightarrow{H} x\}$.

* Therefore, the equivalence class funder $_{H}$ are the left cosets of H in G.