MATH 421
Lecture notes

Roots of unity with special emphasis on finite fields [pp 67 – 70]

These notes differ considerably from Rotman’s presentation.

Lemma 68: As per Rotman. Note in particular the observation immediately following this note.

Recall: For any \(n \in \mathbb{N} \) and field \(F \), we know \(\{ \alpha \in F \mid \alpha^n = 1 \} \) is a cyclic subgroup of \(F^* \) by Corollary 63.

Definition: Let \(n \in \mathbb{N} \) and \(\alpha \in F \). We say \(\alpha \) is a **primitive nth root of unity** if \(\alpha \) generates all of the distinct roots of the polynomial \(x^n - 1 \).

Note 1: 1 is a primitive 1st root of unity. For the rest of our discussion we’ll assume \(n > 1 \).

Note 2: For any \(n \) and field \(F \), there is an extension \(E/F \) containing a primitive \(nth \) root of unity. That is, for any field, we can find a primitive \(nth \) root of unity [in a field] over \(F \).

Note 3: Let \(\text{char}(F) = p \) and \(\alpha \) be a primitive \(nth \) root of unity over \(F \).

- If \(p = 0 \) or \(p \) does not divide \(n \), then \(x^n - 1 \) has exactly \(n \) distinct roots and \(|<\alpha>| = n \).
- If \(p \) divides \(n \), write \(n = p^m d \) where \((d,p) = 1\). Then \(x^n - 1 \) has exactly \(d \) distinct roots and \(|<\alpha>| = d \).

This is an important observation and will be used to adjust many of Rotman’s statements. In particular, note that any primitive 12th root of unity over a field of characteristic 3 is actually a primitive 4th root of unity. Also, 1 is the primitive 8th root of unity in any field having characteristic 2.

Theorem 69’: Let \(F \) be a field with \(\text{char}(F) = p \) and \(E = F(\alpha) \) where \(\alpha \) is a primitive \(nth \) root of unity [over \(F \)]. Letting \(G \) denote \(\text{Gal}(E/F) \) we have

(i) If \(p = 0 \) or \(p \) does not divide \(n \), then \(G \) is isomorphic to a subgroup of \(U(\mathbb{Z}_n) \).
(ii) If \(p \) divides \(n \), write \(n = p^m d \). Then \(G \) is isomorphic to a subgroup of \(U(\mathbb{Z}_d) \).

In either case, we see \(G \) is an abelian group.
Proof: (i) Note $E = F(\alpha)$ is a splitting field for the polynomial $f(x) = x^n - 1$. Let $q(x)$ denote the irreducible polynomial of α in $F[x]$. Since $q(x)$ must divide $f(x)$, we know that $r = \partial(q) \leq n$. Further $\{1, \alpha, \ldots, \alpha^r\}$ is a basis for E over F.

Now, since $\{1, \alpha, \ldots, \alpha^r\}$ is a basis for E over F, we see that any $\sigma \in \text{Gal}(E/F)$ is completely determined by $\sigma(\alpha)$. But σ permutes the n roots of unity in E, which are all generated by α, so $\sigma(\alpha) = \alpha^i$ for a unique i modulo n. But since $\langle \sigma(\alpha) \rangle = \langle \alpha \rangle$, α^i must be a generator of $\langle \alpha \rangle$. Thus $(i, n) = 1$. With this, we have a well-defined function $\psi: \text{Gal}(E/F) \to U(\mathbb{Z}_n)$. Note ψ is a homomorphism to this multiplicative group and it’s injective by Exercise 73.

For (ii) replace every “n” in the argument with “d.”

Note: To see that Rotman’s proof is flawed as presented, consider $p = 3$, $n = 12$ and the proof’s second sentence (p.68). Since α is actually a 4th root of unity, $\alpha^3 = \alpha^9$. However $[5] \neq [9] \mod 12$! The upshot would be, in this case, that one could not construct a well-defined function to $U(\mathbb{Z}_{12})$. However, everything is fine if we work modulo 4.

Example 27: As per Rotman, noting that the $\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ is cyclic of order $p - 1$.

Theorem 70': Let F be a field with $\text{char}(F) = p$; $\alpha \in F$ a primitive nth root of unity; $f(x) = x^n - c \in F[x]$; and E/F a splitting field of $f(x)$ over F. Letting G denote $\text{Gal}(E/F)$ we have:

(i) If $p = 0$ or p does not divide n, then there is an injection $\varphi: G \to (\mathbb{Z}_n, +)$.
(ii) If p divides n, write $n = p^md$. Then there is an injection $\varphi: G \to (\mathbb{Z}_d, +)$.

In case (i): $f(x)$ is irreducible if and only if φ is surjective.
In case (ii): If $f(x)$ is irreducible, then φ is surjective.

Proof: (i) As per Rotman. For (ii) again replace “n” by “d.”

Note: Once again Rotman’s presentation is flawed if $p = 3$ and $n = 12$, as the function he wants to construct is not well-defined in this case. Also check that $F = \mathbb{Z}_3$ and $f(x) = x^3 - 2$ can be used to show that the converse of the last statement is false.

Corollary 71': Let p be a prime; let F be a field with $\text{char}(F) \neq p$ and containing a primitive pth root of unity; and let $f(x) = x^n - c \in F[x]$ with splitting field E. Then either $f(x)$ splits in $F[x]$ and $\text{Gal}(E/F) = 1$ or it is irreducible and $\text{Gal}(E/F)$ is isomorphic to \mathbb{Z}_p.

Proof [adapted from Rotman]: First note that since $\text{char}(F)$ does not divide p we have an injective map $\text{Gal}(E/F) \to (\mathbb{Z}_p, +)$ by Theorem 70'. If $f(x)$ splits, then $E = F$
and \(\text{Gal}(E/F) = 1 \). So we may assume \(f(x) \) does not split. Note that \(f(x) \) is separable in \(F[x] \) (since \((f(x), f'(x)) = 1 \), \(f(x) \) has no repeated roots in \(E \)). Thus, by Theorem 56, \(|\text{Gal}(E/F)| = [E:F] > 1 \). Thus the image of the map is a non-trivial subgroup of \(\mathbb{Z}_p \). But \(\mathbb{Z}_p \) has no proper non-trivial subgroups, so the map must be surjective and \(f(x) \) must be irreducible.

Note: If one omits the underlined hypothesis above, the statement is false. Here’s a counterexample that relates to Example 21. Let \(F = \mathbb{Z}_p(t) \) and consider \(f(x) = x^p - t \in F[x] \). Note that 1 is a primitive pth root of unity in \(F \). [In any field of characteristic \(p \), there is only one pth root of unity!] Letting \(E \) denote the splitting field of \(f(x) \), we have seen \(f(x) = (x - t^{1/p})^p \) in \(E[x] \). That is \(f(x) \) has only one [repeated] root in \(E: t^{1/p} \). Consequently \(|\text{Gal}(E/F)| = 1 \) by Theorem 55 (since \(\text{Gal}(E/F) \) has to be isomorphic to a subgroup of \(S_1 \), the trivial group).

We see that \(f(x) \) is irreducible in \(F[x] \), so it can’t split, yet \(\text{Gal}(E/F) \) is not isomorphic to \(\mathbb{Z}_p \).

Corollary 72: As per Rotman.

Ironically, Rotman correctly observes this proof can be adapted to handle the case where \(\text{char}(F) \) does not divide \(p \). He should have observed this important condition in his other theorems!