Multivariate regression

Marius Ionescu

09/29/2011

Marius Ionescu Multivariate regression

<□> < 注 > < 注 > < 注 >

э

Recall:

Marius Ionescu Multivariate regression

・ロト ・四ト ・ヨト ・ヨト

æ

Recall:

• regression line studies the relationship between two variables.

► < E > <</p>

-

Recall:

- regression line studies the relationship between two variables.
- the independent variable is called X.

Recall:

- regression line studies the relationship between two variables.
- the independent variable is called X.
- the dependent variable is called Y.

Recall:

- regression line studies the relationship between two variables.
- the independent variable is called X.
- the dependent variable is called Y.
- We can write the equation of the line as

 $Y = a_0 + a_1 X.$

1
1
L
I.

ı

・合・・ モ・・

문 🛌 문

• Usually there are more than one independent variables that contribute to the behavior of Y.

- Usually there are more than one independent variables that contribute to the behavior of Y.
- For example, to study the inflation in US, one should include the unemployment, GNP, and the deficit.

- Usually there are more than one independent variables that contribute to the behavior of Y.
- For example, to study the inflation in US, one should include the unemployment, GNP, and the deficit.
- We say that the unemployment, GNP, and the deficit are the independent or X variables.

- Usually there are more than one independent variables that contribute to the behavior of Y.
- For example, to study the inflation in US, one should include the unemployment, GNP, and the deficit.
- We say that the unemployment, GNP, and the deficit are the independent or X variables.
- We label them X_1 , X_2 , and X_3 .

- Usually there are more than one independent variables that contribute to the behavior of Y.
- For example, to study the inflation in US, one should include the unemployment, GNP, and the deficit.
- We say that the unemployment, GNP, and the deficit are the independent or X variables.
- We label them X₁, X₂, and X₃.
- We label the dependent variable Y (in this example the inflation in US).

Definition

If there is more than one explanatory variable $(X_1, X_2, X_3 \text{ say})$ and one response variable (Y), it may be useful to model it as

$$y = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3.$$

Example

Aspirin is so acidic that it often upsets the stomach, so it is often administered with an antacid – which limits its effect. Suppose the pain, measured by the rating of headache sufferers, is given by

$$p = 5 - .3s + .2t,$$

where s is the aspirin dose and t is the antacid dose.

Graphs of the aspirin example

Correlation coefficient

Fact		

◆□ > → @ > → 注 > → 注 >

æ

 As with simple regression, there is a (multiple) correlation R (independent of units) that measures how closely the data points (in 3-space or higher dimensions) follow a (hyper)plane.

- As with simple regression, there is a (multiple) correlation R (independent of units) that measures how closely the data points (in 3-space or higher dimensions) follow a (hyper)plane.
- *R* is a number between 0 and 1.

- As with simple regression, there is a (multiple) correlation R (independent of units) that measures how closely the data points (in 3-space or higher dimensions) follow a (hyper)plane.
- R is a number between 0 and 1.
- To interpret the direction of the relationship between variables, one looks at the signs (plus or minus) of the regression coefficients a₁, a₂, a₃.

- As with simple regression, there is a (multiple) correlation R (independent of units) that measures how closely the data points (in 3-space or higher dimensions) follow a (hyper)plane.
- R is a number between 0 and 1.
- To interpret the direction of the relationship between variables, one looks at the signs (plus or minus) of the regression coefficients a₁, a₂, a₃.
- If a coefficient is positive, then the relationship of this variable with the dependent variable is positive;

4 ∃ > 4

- As with simple regression, there is a (multiple) correlation R (independent of units) that measures how closely the data points (in 3-space or higher dimensions) follow a (hyper)plane.
- *R* is a number between 0 and 1.
- To interpret the direction of the relationship between variables, one looks at the signs (plus or minus) of the regression coefficients a₁, a₂, a₃.
- If a coefficient is positive, then the relationship of this variable with the dependent variable is positive;
- if the coefficient is negative then the relationship is negative.

★ ∃ → < ∃ →</p>

• R^2 says how much better for predicting y is using regression line (i.e., using the y-value \hat{y} on the regression line at that point) than just always using Avg_Y .

- R^2 says how much better for predicting y is using regression line (i.e., using the y-value \hat{y} on the regression line at that point) than just always using Avg_Y .
- If $R^2 = 0.4$, say, "regression results in a 40% improvement in projection".

- R^2 says how much better for predicting y is using regression line (i.e., using the y-value \hat{y} on the regression line at that point) than just always using Avg_Y .
- If R² = 0.4, say, "regression results in a 40% improvement in projection".
- It appears in the computer outputs as well.

- R^2 says how much better for predicting y is using regression line (i.e., using the y-value \hat{y} on the regression line at that point) than just always using Avg_Y .
- If R² = 0.4, say, "regression results in a 40% improvement in projection".
- It appears in the computer outputs as well.
- Let's do an example in Excel.