Math 111 C - Exam I

Show all work clearly for partial credit. Do not use the graphing capabilities of your calculator.

1. (8 points) Find exactly; i.e., do not use a calculator:
(a) $\log _{2} 10+2 \log _{2} 6-\log _{2} 45$
(b) $\frac{\ln \sqrt[5]{125}}{\ln 5}$
2. (20 points) Find the limits, if they exist:
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-1}$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}+3 x+2}{x^{2}-1}$
(c) $\lim _{x \rightarrow 0} \ln \left(x^{2}\right)$
(d) $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{|x|}+\frac{1}{x}\right)$
3. (14 points) For the function $f(x)$ with the graph below, find or approximate (if they exist):
(a) $f(-2)$,
(b) $\lim _{x \rightarrow-2} f(x)$,
(c) the equation(s) of the vertical asymptote(s),
(d) the equation(s) of the horizontal asymptote(s),
(e) $\lim _{x \rightarrow 0} f(x)$,
(f) the x-value(s) at which f has a removable discontinuity, and
(g) the slope of the tangent line to the graph of $y=f(x)$ at $x=1$.

4. (18 points) Find the equations of the horizontal and vertical asymptotes:
(a) $f(x)=\frac{x^{2}-4}{x^{2}-3 x+2}$
(b) $g(x)=\frac{2 x}{\sqrt{x^{2}+4}}$
5. (17 points) (a) Write down in terms of h an expression for the slope of the (secant) line joining the points on the graph of the function $f(x)=\sqrt{2 x+3}$ with the x-values $x=11$ and $x=11+h$.
(b) Using your answer to (a), find the slope of the tangent line to the graph of the function $f(x)=\sqrt{2 x+3}$ at the point $x=11$. (Use of a derivative formula - whatever that is - or simply the answer will receive no credit. Note: This is the same as the instantaneous rate of change of $f(x)=\sqrt{2 x+3}$ with respect to x at the point where $x=11$.)
(c) Using your answer to (b), write the equation of the tangent line to the graph of $f(x)=$ $\sqrt{2 x+3}$ at $x=11$.
6. (15 points) Let $f(x)=\sqrt{x}, a=9$ and $\varepsilon=0.4$. What is the largest value of δ for which,

$$
\text { if } 0<|x-9|<\delta, \text { then }|\sqrt{x}-3|<.4 ?
$$

(An answer of the form "the smaller of the two numbers \qquad and \qquad $"$ is preferred but not required. The following drawing may be helpful.)

7. (8 points) The area of an algae growth on the surface of the liquid in a vat doubles every 10 hours. At midnight the area was $4 \mathrm{~cm}^{2}$. Write a formula in terms of t for the area $A(t)$ of the algae growth t hours after midnight.

Some possibly useful equations:

$$
\begin{gathered}
y-y_{0}=m\left(x-x_{0}\right) \quad a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
a^{r}=b \Longleftrightarrow \log _{a} b=r \quad \log _{a} c=\frac{\log _{b} c}{\log _{b} a}
\end{gathered}
$$

Solutions to Math 111C Exam I

1. (a) $\log _{2}\left(10\left(6^{2}\right) / 45\right)=\log _{2}(360 / 45)=\log _{2} 8=\log _{2} 2^{3}=3$.
(b) $\log _{5}\left(125^{1 / 5}\right)=\log _{5}\left(5^{3}\right)^{1 / 5}=\log _{5}\left(5^{3 / 5}\right)=3 / 5$.
2. (a) $\lim _{x \rightarrow 1}((x-2)(x-1)) /((x-1)(x+1))=\lim _{x \rightarrow 1}(x-2) /(x+1)=(1-2) /(1+1)=-1 / 2$.
(b) The denominator does not approach 0 as $x \rightarrow 2$, so we can find the limit by substitution: $\left(2^{2}+3(2)+2\right) /\left(2^{2}-1\right)=4$.
(c) As $x \rightarrow 0$ from either the right or left, x^{2} approaches 0 from the right, so its natural logarithm approaches $-\infty$. (To say that the limit does not exist is also acceptable, because $-\infty$ is not a real number.)
(d) For all x-values less than 0 , we have $|x|=-x$, so $(1 /|x|)+(1 / x)=0$, so the limit is 0 .
3. (a) -1 (as nearly as we can tell), the location of the solid dot.
(b) 2 (as nearly as we can tell), the value toward which the graph is heading.
(c) $x=0$ (the y-axis) and $x=2$.
(d) $y=0$ (the x -axis) to the left and $y=1$ to the right.
(e) $-\infty$. (To say that the limit does not exist is also acceptable, because $-\infty$ is not a real number.)
(f) $x=-2$. The rest are jump discontinuities or worse.
(g) 0 (the tangent looks horizontal).
4. (a) $\lim _{x \rightarrow \infty}\left(1-\left(4 / x^{2}\right)\right) /\left(1-(3 / x)+\left(2 / x^{2}\right)\right)=(1-0) /(1-0+0)=1$, and this is also the limit as $x \rightarrow-\infty$, so $y=1$ is a horizontal asymptote to both the right and left. Because $\left(x^{2}-4\right) /(x 2-3 x+2)=(x+2) /(x-1)$ except at $x=2$, there is a removable discontinuity at $x=2$; the only vertical asymptote is $x=1$, where the denominator is 0 and the numerator is not.
(b) Because the denominator is never 0 , there are no vertical asymptotes. Now:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{x^{2}}+4} & =\lim _{x \rightarrow \infty} \frac{2}{\sqrt{1+\left(4 / x^{2}\right)}}=\frac{2}{\sqrt{1+0}}=2 \\
\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}}+4} & =\lim _{x \rightarrow-\infty} \frac{2}{-\sqrt{1+\left(1 / x^{2}\right)}}=-\frac{2}{\sqrt{1+0}}=-2
\end{aligned}
$$

So $y=2$ is a horizontal asymptote to the right and $y=-2$ is one to the left.
5. (a)

$$
\frac{\sqrt{2(11+h)+3}-\sqrt{2(11)+3}}{h}
$$

(b)

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{2(11+h)+3}-\sqrt{2(11)+3}}{h} & =\lim _{h \rightarrow 0} \frac{(2(11+h)+3)-(2(11)+3)}{h(\sqrt{2(11+h)+3}+\sqrt{2(11)+3})} \\
& =\lim _{h \rightarrow 0} \frac{2}{\sqrt{2(11+h)+3}+\sqrt{2(11)+3}} \\
& =\frac{2}{\sqrt{2(11+0)+3}+\sqrt{2(11)+3}} \\
& =\frac{2}{2 \sqrt{2(11)+3}}=\frac{1}{5}
\end{aligned}
$$

(c) Because $f(11)=5$, the desired tangent line is $y-5=\frac{1}{5}(x-11)$.
6. Because the inverse of the function $y=\sqrt{x}$ is $x=y^{2}$, the question marks are 2.6^{2} and 3.4^{2}; so the answer is: the largest δ that works is the smaller of the two numbers $9-2.6^{2}[=2.24]$ and $3.4^{2}-9[=2.56]$, [i.e., 2.24]. It would not have been necessary to give any of the material in the brackets.
7. This is an example of "exponential growth", so the formula is $A(t)=A_{0}\left(2^{k t}\right)$, where A_{0} is the area at time 0 (which we are told is 4) and the "growth rate" k is a constant chosen to fit the given information. (We could have used a different base in place of 2 , and then k would have been different.) In this case, because we know that, when $t=10, A(10)$ is twice as large as it was at midnight, so it is $8: 8=4\left(2^{k(10)}\right)$, so $1=k(10)$, so $k=1 / 10$. So the formula is $A(t)=4\left(2^{t / 10}\right)$.

