Math 111 C - Exam II

Show all work clearly for partial credit. Do not use the graphing capabilities of your calculator.

1. (42 points) Find the derivatives:
(a) $g(x)=5 x^{8}-2 x^{5}+6$
(b) $u=\sqrt[3]{t^{2}}+2 \sqrt{t^{3}}$
(c) $y=2^{\sin (\pi x)}$
(d) $y=e^{u}(\cos u+4 u)$
(e) $F(z)=\sqrt{\frac{z-1}{z+1}}$
2. (13 points) For $f(x)=\sqrt{1+2 x}$, find $f^{\prime}(x)$ using the limit definition of the derivative. Use of derivative formulas or simply the answer will receive no credit.
3. (12 points) (a) Find $d y / d x$ if $y=x /\left(1+x^{2}\right)$.
(b) Find an equation of the tangent line to the curve $y=x /\left(1+x^{2}\right)$ at the point where $x=3$.
4. (8 points) For the function g whose graph is given, arrange the following numbers in increasing order:

$$
0, \quad g^{\prime}(-2), \quad g^{\prime}(0), \quad g^{\prime}(2), \quad g^{\prime}(4)
$$

5. (10 points) A stone is dropped into a lake, creating a circular ripple that travels outward at a speed of $12 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area within the circle is increasing $t \sec$ after the stone is dropped, in terms of t. (Hint: Express the radius of the circle in terms of t.)
6. (15 points) Recall that the number e was chosen so that the slope of $y=e^{x}$ at $(0,1)$ is 1 .
(a) What is the slope of $y=\ln x$ at $(1,0)$? (Hint: From the graph of $y=e^{x}$, how do you get the graph of $y=\ln x$?)
(b) In view of your answer to (a), what is

$$
\lim _{t \rightarrow 0} \frac{\ln (1+t)}{t} ?
$$

(Hint: How do we write down the slope of $y=\ln x$ at $(1,0)$ as a limit?)
(c) Use the limit definition of derivative, the substitution $h / x=t$, and your answer to (b) to prove that

$$
\frac{d}{d x}(\ln x)=\frac{1}{x}
$$

Some possibly useful equations:

$$
\begin{gathered}
V=e^{3} \quad A=\pi r^{2} \quad A=6 e^{2} \\
y-y_{0}=m\left(x-x_{0}\right) \quad h=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
\end{gathered}
$$

Solutions to Math 111C Exam II

1.

(a) $g^{\prime}(x)=40 x^{7}-10 x^{4}$
(b) $d u / d t=\frac{2}{3} t^{-1 / 3}+3 t^{1 / 2}$
(c) $d y / d x=2^{\sin \pi x}(\ln 2)(\cos \pi x) \pi$
(d) $d y / d u=e^{u}(-\sin u+4)+(\cos u+4 u) e^{u}$
(e)

$$
F^{\prime}(z)=\frac{1}{2}\left(\frac{z-1}{z+1}\right)^{-1 / 2}\left(\frac{(z+1)-(z-1)}{(z+1)^{2}}\right)=\frac{1}{2} \sqrt{\frac{z+1}{z-1}}\left(\frac{2}{(z+1)^{2}}\right)
$$

2.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{1+2(x+h)}-\sqrt{1+2 x}}{h}=\lim _{h \rightarrow 0} \frac{(1+2(x+h))-(1+2 x)}{h(\sqrt{1+2(x+h)}+\sqrt{1+2 x})} \\
& =\lim _{h \rightarrow 0} \frac{2}{\sqrt{1+2(x+h)}+\sqrt{1+2 x}}=\frac{1}{\sqrt{1+2 x}}
\end{aligned}
$$

3. (a) $d y / d x=\left[\left(1+x^{2}\right)-x(2 x)\right] /\left(1+x^{2}\right)^{2}=\left(1-x^{2}\right) /\left(1+x^{2}\right)^{2}$
(b) When $x=3, y=3 /\left(1+3^{2}\right)=0.3$ and $d y / d x=\left(1-3^{2}\right) /\left(1+3^{2}\right)^{2}=-0.08$, so the requested tangent line is $y-0.3=-0.08(x-3)$.
4. The slopes of the given graph at -2 and 0 are positive, with the slope at -2 larger than the slope at 0 ; and the slopes at 2 and 4 are negative, with the slope at 2 more negative than the slope at 4. So the desired arrangement is: $g^{\prime}(2)<g^{\prime}(4)<0<g^{\prime}(0)<g^{\prime}(-2)$.
5. Let r denote the radius of the ripple in cm ; then $r=12 t$. We know that, if A denotes the area in cm^{2} enclosed by the ripple, then $A=\pi r^{2}$, so $A=\pi(12 t)^{2}=144 \pi t^{2}$. So we get $d A / d t=288 \pi t \mathrm{~cm}^{2} / \mathrm{sec}$.
6. (a) Because the functions $y=e^{x}$ and $y=\ln x$ are inverses of each other, the graph of $y=\ln x$ is the result of flipping the graph of $y=e^{x}$ around the line $y=x$, so the slope of $y=\ln x$ at $(1,0)$ is also 1 .
(b) Using the fact that $\ln 1=0$, we see that the slope of $y=\ln x$ at $(1,0)$ is

$$
\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln 1}{h}=\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h}=\lim _{t \rightarrow 0} \frac{\ln (1+t)}{t},
$$

so by (a) the requested limit is 1 .
(c) Using (b) and the fact that, as h approaches $0, t=h / x$ also approaches 0 , we get

$$
\begin{aligned}
\frac{d}{d x}(\ln x) & =\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln x}{h}=\lim _{h \rightarrow 0} \frac{\ln \left(\frac{x+h}{x}\right)}{h}=\lim _{h \rightarrow 0} \frac{\ln \left(1+\frac{h}{x}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\ln (1+t)}{x t}=\lim _{h \rightarrow 0} \frac{\ln (1+t)}{t} \cdot \frac{1}{x}=1 \cdot \frac{1}{x}=\frac{1}{x}
\end{aligned}
$$

