## Math 111 C - Final Exam

Show all work clearly for partial credit. Do not use the graphing capabilities of your calculator.

1. (18 points) Find:
(a) $\frac{d}{d x}\left(x \ln \left(x^{2}+1\right)\right)$
(b) $\int\left(\sin 3 x+2 e^{x}\right) d x$
(c) $\lim _{x \rightarrow-\infty} \frac{x^{2}}{2 x^{2}+3 x-4}$
2. (12 points) If $f^{\prime}(x)=3 x^{4}-8 x^{3}+6 x^{2}$, find intervals of concavity and inflection points of the original function $f$.
3. (12 points) A box with an open top is required to have its length twice its width and its volume $288 \mathrm{in}^{3}$. What dimensions will give a minimum surface area (not including the top)?

4. (12 points) A spotlight on the ground is trained on a parachutist who is descending vertically toward a spot on the ground $80 \sqrt{3} \mathrm{ft}$ away from the spotlight. When the parachutist is 80 ft above the ground and falling at $12 \mathrm{ft} / \mathrm{sec}$, how fast is the angle between the ground and the beam of the spotlight decreasing, in radians per second?

5. (11 points) On a planet where the acceleration of gravity is $10 \mathrm{~m} / \mathrm{sec}^{2}$, an astronaut stands at the edge of a cliff and drops a rock (with initial velocity 0 ). The rock hits the ground at the base of the cliff 3 sec later. How high was the cliff (in meters)?
6. (18 points) Evaluate:
(a) $\int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} d x$
(b) $\int_{-1}^{1} \frac{x}{9+x^{4}} d x$
(c) $\int_{0}^{\sqrt{3} / 2} \frac{d x}{\sqrt{1-x^{2}}}$
7. (7 points) Use the Lefthand Rule with $n=5$ to approximate the area between the curves:

8. (5 points) Display a function $F(x)$ for which $F^{\prime}(x)=\sqrt{x^{3}+4}$ and $F(2)=0$.
9. ( 5 points) If the measurement in the side of a square may be off by $2 \%$, by what percent may the computed area of the square be off? Or does the possible percentage error depend on the measurement of the side?

Some possibly useful equations:

$$
\begin{array}{clrl}
a^{2}+b^{2} & =c^{2} & s(t)=-\frac{1}{2} g t^{2}+v_{0} t+s_{0} \\
\frac{d}{d x}(\arctan u) & =\frac{1}{1+u^{2}} & \frac{d}{d u}(\arcsin u)=\frac{1}{\sqrt{1-u^{2}}}
\end{array}
$$

## Solutions to Math 111C Final Exam

1. (a) $\left(x /\left(x^{2}+1\right)\right) 2 x+\ln \left(x^{2}+1\right)$
(b) $-\frac{1}{3} \cos 3 x+2 e^{x}+C$
(c)

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}}{2 x^{2}+3 x-4}=\lim _{x \rightarrow-\infty} \frac{1}{2+(3 / x)-\left(4 / x^{2}\right)}=\frac{1}{2+0-0}=\frac{1}{2}
$$

2. $f^{\prime \prime}(x)=12 x^{3}-24 x^{2}+12 x=12 x(x-1)^{2}$, which is 0 when $x=0,1$ and never undefined; so we consider the intervals $(-\infty, 0),(0,1)$ and $(1, \infty)$. Now, $f^{\prime \prime}(-1)<0, f^{\prime \prime}(1 / 2)>0$, and $f^{\prime \prime}(2)>0$, so the concavities of $f$ on these intervals are down, up and up respectively. Thus, 0 is a point of inflection; but 1 is not, because the concavity does not change there.
3. Using the notation in the picture, the formula for the volume of a box gives $288=2 w^{2} h$, so $h=144 / w^{2}$. Now adding the surface areas of front and back, two sides and the bottom gives $A=2(2 w h)+2(w h)+2 w^{2}=6 w h+2 w^{2}=864 / w+2 w^{2}$. Thus, $d A / d w=-864 w^{-2}+4 w$, which is 0 when $w^{3}=864 / 4=216$, so $w=6$ in - and then $2 w=12$ and $h=4$. This gives the minimum area because as $w$ approaches either 0 or $\infty, A$ grows without bound.
4. Because $h /(80 \sqrt{3})=\tan \theta$, we have $(1 /(80 \sqrt{3}))(d h / d t)=\left(\sec ^{2} \theta\right)(d \theta / d t)$. Now when $h=80$ and $d h / d t=-12$, we have the length of the light beam is $\sqrt{80^{2}+(80 \sqrt{3})^{2}}=160$ (and $\theta=\pi / 6)$, so $d \theta / d t=(1 /(80 \sqrt{3}))(-12) /(160 /(80 / \sqrt{3}))^{2}=-9 /(80 \sqrt{3}) \mathrm{rad} / \mathrm{sec}$.
5. Because $a(t)=-10, v(t)=-10 t$ (because $v(0)=0$ ) and so $s(t)=-5 t^{2}+s_{0}$ where $s_{0}$ is the height of the cliff in meters (the height at time 0 ). Because $s(3)=0$, we get $s_{0}=5(3)^{2}=45 \mathrm{~m}$.
6. (a)Using the substitution $u=1+e^{x}$, we get $d u=e^{x} d x$ and as $x$ goes from 0 to $\ln 2, u$ goes from 2 to 3 , so the desired integral becomes

$$
\int_{2}^{3} \frac{1}{u} d u=\left.\ln u\right|_{2} ^{3}=\ln 3-\ln 2=\ln (3 / 2) .
$$

(b) It is possible to do this problem with the substitution $u=3 x^{2}$. But the easy way is to realize that $x /\left(9+x^{4}\right)$ is an odd function, being integrated over an interval symmetric about 0 , so the integral is 0 .
(c) $\left.\arcsin x\right|_{0} ^{\sqrt{3} / 2}=(\pi / 3)-0=\pi / 3$
7. The interval from -1 to 14 is 15 units long, so one-fifth of it is 3 : We find the differences between the two functions at $-1,2,5,8$ and 11 , add and multiply by 3 :

$$
[(4-4)+(6-(-1))+(5-(-3))+(3-1)+(7-4)] 3=60 .
$$

8. $F(x)=\int_{2}^{x} \sqrt{t^{3}+4} d t$
9. If $x$ is the side of the square (measured in some linear unit) and $A$ is the area in square units, then $A=x^{2}$, so $d A / A=(2 x d x) / x^{2}=2(d x / x)=2(2 \%)=4 \%$. It doesn't depend on the measurement.
