Math 111 E and H — Exam I

Show all work clearly for partial credit. Do not use the graphing capabilities of your calculator.

1. (8 points) Find exactly; i.e., do not use a calculator:

(a)
$$\log_3 45 - \log_3 5$$
 (b) $\frac{\log_2 \sqrt{27}}{\log_2 3}$

2. (20 points) Find the limits, if they exist:

(a)
$$\lim_{x \to 3} \frac{x^2 - 3x + 2}{x^2 - 4}$$
 (b) $\lim_{x \to 2} \frac{x^2 + 3x + 2}{x^2 - 4}$
(c) $\lim_{x \to \infty} (2e^{-x} - 1)$ (d) $\lim_{x \to 0^-} \left(\frac{1}{x} - \frac{1}{|x|}\right)$

- 3. (14 points) For the function f(x) with the graph below, find or approximate (if they exist):
 - (a) $\lim_{x \to -2^{-}} f(x)$,
 - (b) the equation(s) of the vertical asymptote(s),
 - (c) the equation(s) of the horizontal asymptote(s),
 - (d) $\lim_{x\to 0} f(x)$,
 - (e) the x-value(s) at which f has a removable discontinuity,
 - (f) f'(-1) and
 - (g) f'(1)

4. (18 points) Find the equations of the horizontal and vertical asymptotes:

(a)
$$f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$$
 (b) $g(x) = \frac{x}{\sqrt{x^2 + 1}}$

5. (15 points) (a) Use the limit definition of the derivative (in either form) to find f'(11), the derivative of $f(x) = \sqrt{2x+3}$ at a = 11. Use of a derivative formula or simply the answer will receive no credit.

(b) Write the equation of the tangent line to $y = \sqrt{2x+3}$ at x = 11.

6. (15 points) Let $f(x) = x^2$, a = 2 and $\varepsilon = 0.5$. What is the largest value of δ for which,

if
$$0 < |x - 2| < \delta$$
, then $|x^2 - 4| < .5$?

(An answer of the form "the smaller of the two numbers _____ and ____" is preferred but not required.)

6. (18 points) Which of the lettered graphs A, B or C is that of the derivative of f(x)? Explain your answer.

Some possibly useful equations:

$$y - y_0 = m(x - x_0) \qquad a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$
$$a^r = b \Longleftrightarrow \log_a b = r \qquad \log_a c = \frac{\log_b c}{\log_b a}$$

Solutions to Math 111EH Exam I

- 1. (a) $\log_3(45/5) = \log_3 9 = 2$.
 - (b) $\log_3 \sqrt{27} = \log_3 (3^3)^{1/2} = 3/2.$
- 2. (a) $\lim_{x\to 2}((x-2)(x-1))/((x-2)(x+2)) = \lim_{x\to 2}(x-1)/(x+2) = (2-1)/(2+2) = 1/4.$
 - (b) $\lim_{x\to 2}((x+2)(x+1))/((x-2)(x+2)) = \lim_{x\to 2}(x+1)/(x-2)$, which does not exist: as x approaches 2 from the left, the quotient approaches $-\infty$, while as x approaches 2 from the right, the quotient approaches ∞ .
 - (c) As x grows without bound, -x approaches $-\infty$, so e^x approaches 0; and hence the required limit is 2(0) 1 = -1.
 - (d) For x-values less than 0, we have |x| = -x, so (1/x) (l/|x|) = 2/x, which approaches $-\infty$ as x approaches 0 from the left.
- 3. (a) 1 (as nearly as we can tell).
 - (b) x = -2 and x = 0 (the y-axis).
 - (c) y = 1 to the left and y = 0 (the x-axis) to the right.
 - (d) The limit does not exist. The two one-sided limits are ∞ and $-\infty$, so they do not agree.
 - (e) x = 3. The rest are jump discontinuities or worse.
 - (f) 0 and (g) about 1.
- 4. (a) $\lim_{x\to\infty} (1-(1/x^2))/(1-(3/x)+(2/x^2)) = (1-0)/(1-0+0) = 1$, and this is also the limit as $x \to -\infty$, so y = 1 is a horizontal asymptote to both the right and left. Because $(x^2-l)/(x^2-3x+2) = (x+l)/(x-2)$ except at x = 1, there is a removable discontinuity at x = 1; the only vertical asymptote is x = 2.
 - (b) Because the denominator is never 0, there are no vertical asymptotes. Now:

$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + (1/x^2)}} = \frac{1}{\sqrt{1 + 0}} = 1$$
$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to -\infty} \frac{1}{-\sqrt{1 + (1/x^2)}} = -\frac{1}{\sqrt{1 + 0}} = -1$$

So y = 1 is a horizontal asymptote to the right and y = -1 is one to the left.

5. (a)

$$f'(11) = \lim_{h \to 0} \frac{\sqrt{2(11+h)+3} - \sqrt{2(11)+3}}{h} = \lim_{h \to 0} \frac{(2(11+h)+3) - (2(11)+3)}{h(\sqrt{2(11+h)+3} + \sqrt{2(11)+3})}$$
$$= \lim_{h \to 0} \frac{2}{\sqrt{2(11+h)+3} + \sqrt{2(11)+3}} = \frac{2}{\sqrt{2(11+0)+3} + \sqrt{2(11)+3}}$$
$$= \frac{2}{2\sqrt{2(11)+3}} = \frac{1}{5}$$

(b) Because f(11) = 5, the desired tangent line is $y - 5 = \frac{1}{5}(x - 11)$.

- 6. Because the inverse of the function $y = x^2$ is $x = \sqrt{y}$, at least on the part of the curve in which we are interested, the answer is: the largest δ that works is the smaller of the two numbers $2 \sqrt{3.5}$ and $\sqrt{4.5} 2$.
- 7. C: The tangents to f(x) have small negative slopes both to the left and to the right, and in between the slopes become positive, with the greatest slope at x = 0.