Math 111 E and H - Exam I

Show all work clearly for partial credit. Do not use the graphing capabilities of your calculator.

1. (8 points) Find exactly; i.e., do not use a calculator:
(a) $\log _{3} 45-\log _{3} 5$
(b) $\frac{\log _{2} \sqrt{27}}{\log _{2} 3}$
2. (20 points) Find the limits, if they exist:
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x+2}{x^{2}-4}$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}+3 x+2}{x^{2}-4}$
(c) $\lim _{x \rightarrow \infty}\left(2 e^{-x}-1\right)$
(d) $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)$
3. (14 points) For the function $f(x)$ with the graph below, find or approximate (if they exist):
(a) $\lim _{x \rightarrow-2^{-}} f(x)$,
(b) the equation(s) of the vertical asymptote(s),
(c) the equation(s) of the horizontal asymptote(s),
(d) $\lim _{x \rightarrow 0} f(x)$,
(e) the x-value(s) at which f has a removable discontinuity,
(f) $f^{\prime}(-1)$ and
(g) $f^{\prime}(1)$

4. (18 points) Find the equations of the horizontal and vertical asymptotes:
(a) $f(x)=\frac{x^{2}-1}{x^{2}-3 x+2}$
(b) $g(x)=\frac{x}{\sqrt{x^{2}+1}}$
5. (15 points) (a) Use the limit definition of the derivative (in either form) to find $f^{\prime}(11)$, the derivative of $f(x)=\sqrt{2 x+3}$ at $a=11$. Use of a derivative formula or simply the answer will receive no credit.
(b) Write the equation of the tangent line to $y=\sqrt{2 x+3}$ at $x=11$.
6. (15 points) Let $f(x)=x^{2}, a=2$ and $\varepsilon=0.5$. What is the largest value of δ for which,

$$
\text { if } 0<|x-2|<\delta \text {, then }\left|x^{2}-4\right|<.5 ?
$$

(An answer of the form "the smaller of the two numbers \qquad and \qquad " is preferred but not required.)
6. (18 points) Which of the lettered graphs A, B or C is that of the derivative of $f(x)$? Explain your answer.

Some possibly useful equations:

$$
\begin{gathered}
y-y_{0}=m\left(x-x_{0}\right) \quad a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
a^{r}=b \Longleftrightarrow \log _{a} b=r \quad \log _{a} c=\frac{\log _{b} c}{\log _{b} a}
\end{gathered}
$$

Solutions to Math 111EH Exam I

1. (a) $\log _{3}(45 / 5)=\log _{3} 9=2$.
(b) $\log _{3} \sqrt{27}=\log _{3}\left(3^{3}\right)^{1 / 2}=3 / 2$.
2. (a) $\lim _{x \rightarrow 2}((x-2)(x-1)) /((x-2)(x+2))=\lim _{x \rightarrow 2}(x-1) /(x+2)=(2-1) /(2+2)=1 / 4$.
(b) $\lim _{x \rightarrow 2}((x+2)(x+1)) /((x-2)(x+2))=\lim _{x \rightarrow 2}(x+1) /(x-2)$, which does not exist: as x approaches 2 from the left, the quotient approaches $-\infty$, while as x approaches 2 from the right, the quotient approaches ∞.
(c) As x grows without bound, $-x$ approaches $-\infty$, so e^{x} approaches 0 ; and hence the required limit is $2(0)-1=-1$.
(d) For x-values less than 0 , we have $|x|=-x$, so $(1 / x)-(l /|x|)=2 / x$, which approaches $-\infty$ as x approaches 0 from the left.
3. (a) 1 (as nearly as we can tell).
(b) $x=-2$ and $x=0$ (the y-axis).
(c) $y=1$ to the left and $y=0$ (the x-axis) to the right.
(d) The limit does not exist. The two one-sided limits are ∞ and $-\infty$, so they do not agree.
(e) $x=3$. The rest are jump discontinuities or worse.
(f) 0 and (g) about 1 .
4. (a) $\lim _{x \rightarrow \infty}\left(1-\left(1 / x^{2}\right)\right) /\left(1-(3 / x)+\left(2 / x^{2}\right)\right)=(1-0) /(1-0+0)=1$, and this is also the limit as $x \rightarrow-\infty$, so $y=1$ is a horizontal asymptote to both the right and left. Because $\left(x^{2}-l\right) /(x 2-3 x+2)=(x+l) /(x-2)$ except at $x=1$, there is a removable discontinuity at $x=1$; the only vertical asymptote is $x=2$.
(b) Because the denominator is never 0, there are no vertical asymptotes. Now:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}}+1} & =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\left(1 / x^{2}\right)}}=\frac{1}{\sqrt{1+0}}=1 \\
\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}}+1} & =\lim _{x \rightarrow-\infty} \frac{1}{-\sqrt{1+\left(1 / x^{2}\right)}}=-\frac{1}{\sqrt{1+0}}=-1
\end{aligned}
$$

So $y=1$ is a horizontal asymptote to the right and $y=-1$ is one to the left.
5. (a)

$$
\begin{aligned}
f^{\prime}(11) & =\lim _{h \rightarrow 0} \frac{\sqrt{2(11+h)+3}-\sqrt{2(11)+3}}{h}=\lim _{h \rightarrow 0} \frac{(2(11+h)+3)-(2(11)+3)}{h(\sqrt{2(11+h)+3}+\sqrt{2(11)+3}} \\
& =\lim _{h \rightarrow 0} \frac{2}{\sqrt{2(11+h)+3}+\sqrt{2(11)+3}}=\frac{2}{\sqrt{2(11+0)+3}+\sqrt{2(11)+3}} \\
& =\frac{2}{2 \sqrt{2(11)+3}}=\frac{1}{5}
\end{aligned}
$$

(b) Because $f(11)=5$, the desired tangent line is $y-5=\frac{1}{5}(x-11)$.
6. Because the inverse of the function $y=x^{2}$ is $x=\sqrt{y}$, at least on the part of the curve in which we are interested, the answer is: the largest δ that works is the smaller of the two numbers $2-\sqrt{3.5}$ and $\sqrt{4.5}-2$.
7. C: The tangents to $f(x)$ have small negative slopes both to the left and to the right, and in between the slopes become positive, with the greatest slope at $\mathrm{x}=0$.

