
Proofs of Convergence Tests for Series of Positive Terms

Suppose we have a series
∑∞

n=1 an when an > 0, and we want to know whether this series converges.
Because the partial sums form an increasing sequence, the only way the series can fail to converge is by
diverging to ∞; so we are really asking whether the partial sums are bounded above. Here are several tests
for answering this question:

Integral Test: If f(x) is a decreasing positive function from [1,∞) to [0,∞), then the series
∑

f(n) converges
if and only if the improper integral

∫∞
0

f(x) dx converges (i.e., is finite).

The (graphical) proof of this appears in a different supplement.

Comparison Test: If 0 < an ≤ bn and
∑

bn converges, then
∑

an also converges.

This is similar to the Comparison Test for improper integrals. The idea is simply that, because the
partial sums of

∑
bn are bounded above, then so are the smaller partial sums of

∑
an.

Notes: (1) This statement is logically equivalent to its “contrapositive” statement: If 0 < an ≤ bn and∑
an diverges, then

∑
bn also diverges.

(2) This test [respectively, the next test] is used as follows: Given a series
∑

an, pick a series∑
bn about which it is known whether it converges or diverges, and check that an < bn [respectively, that

limn→∞(an/bn) is finite and nonzero].

Limit Comparison Test: If 0 < an, bn and limn→∞(an/bn) = L, where L is neither 0 nor ∞, then either∑
an and

∑
bn both converge or both series diverge.

This is a mildly tricky application of the Comparison Test: Pick a number a bit larger than L — L + 1
will do. Because the quotient has limit L, for all n at least as large as some positive integer N we have
an/bn < L + 1, and so an < (L + 1)bn. Now the series

∑
(L + 1)bn converges (to L + 1 times whatever the

series
∑

bn converges to), so by the Comparison Test (applied only to the terms starting with the N -th one,
but that doesn’t affect convergence), we see that

∑
an also converges.

Note: The proof of this test shows that more is true. (It would just make the statement more complicated
to try to include it.) For example, if lim(an/bn) = 0, then bn is eventually larger than an; so if

∑
bn converges,

then so does
∑

an. And if lim(an/bn) = ∞, then an is eventually larger than bn, so if
∑

bn diverges, then
so does an. But for neither of these statements is the converse true.

Ratio Test: If 0 < an and limn→∞(an+1/an) < 1, then
∑

an converges. If the limit is greater than 1, then
the series diverges. And if the limit is equal to 1, then the test gives no information.

This application of the Comparison Test is trickier still: Suppose the limit is less than 1, and pick a
number r larger than the limit but still less than 1 (for instance, the average of the limit and 1). Then
because the limit is less than r for all n at least as large as some positive integer N we have an+1/an < r,
i.e., an+1 < anr. So for all k ≥ 1 we have

aN+k < aN+k−1r < (aN+k−2r)r = aN+k−2r
2 < (aN+k−3r)r2 = aN+k−3r

3 < . . . < aNrk .

So starting with the N -th term, the terms of the series
∑

an are bounded above by the terms of the geometric
series

∑
aNrk (where the last sum runs over k, not n). This geometric series has common ratio r < 1, so it

converges; and hence, so does
∑

an.
Suppose the initial limit were greater than 1. Then in a similar way we can see that the terms an are

eventually bounded below by the terms of a a geometric series with common ratio greater than 1, so
∑

an

diverges.

Note: This test is easy to use, but it often gives a limit of 1, so it is often inconclusive. For example,
the Integral Test shows that the p-series

∑
1/np converges for p > 1 and diverges for p ≤ 1, but the Ratio
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Test gives a limit of 1 in both cases.

Root Test: If 0 < an and limn→∞ n
√

an < 1, then
∑

an converges. If the limit is greater than 1, then the
series diverges. And if the limit is equal to 1, then the test gives no information.

Suppose the limit is less than 1, and pick a number r between the limit and 1. Then for all “sufficiently
large” n we have n

√
an < r, i.e., an < rn. Thus, for all sufficiently large n the terms in the given series are

bounded above by the terms of the convergent geometric series
∑

rn, so the given series also converges.
On the other hand, if the limit is greater than 1 and we choose an r between the limit and 1, then the

terms of the given series are eventually greater than the terms in the divergent geometric series
∑

rn, so the
given series diverges.

Note: The Root Test is harder to apply than the Ratio Test, but it can sometimes show convergence or
divergence when the Ratio Test is inconclusive. Like the Ratio Test, however, it is inconclusive on p-series
(and hence also on the many series that could be decided with the Limit Comparison Test applied with
p-series).
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