
Deriving the Second Derivative Test

Start with z = f(x, y) and a point (a, b) for which fx(a, b) = fy(a, b) = 0. To
simplify notation, let’s write

fxx(a, b) = T, fxy(a, b) = U, fyy(a, b) = V.

Then using the second-degree Taylor polynomial for f gives
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Thus, if TV−U 2 < 0, the two square terms have opposite signs, so f resembles
a hyperbolic parabolic — (a, b) is a saddle point.

And if TV −U 2 > 0, it resembles an elliptical paraboloid, opening upward if
T > 0 and downward if T < 0.

But if TV −U 2 = 0, the second-degree Taylor polynomial doesn’t give enough
information to classify the critical point (a, b) — compare x4+y4 and x3−xy2,
one with a local minimum at (0, 0) and the other with a saddle point there,
but both with TV − U 2 = 0.

Therefore: Suppose fx(a, b) = fy(a, b) = 0, and set D = fxx(a, b)fyy(a, b)−
fxy(a, b)

2. Then:

• if D < 0, then f has a saddle point at (a, b);

• if D > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b);

• if D > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b); and

• if D = 0, anything can happen.
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