Chapter 13, Section 7, Exercise 20

Though I didn’t assign this one, let us look at a solution: Writing down the
definitions for f,, and f, and assuming that all the limits behave well, we
get:
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If we did the same thing with f,, and f,, we would get almost the same
expression:
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The only difference is the order in which we take the limits. So if the limits
behave well with respect to each other, we should get the same result.



