Derivation of the Directional Derivative Formula

We let @ = u17+ ug) be a fixed unit vector in the xy-plane, and as usual, we let z = f(z,y). We want to
show that the simple formula for the directional derivative

fa = four + fyus
is valid wherever f is a differentiable function. We fix a particular point (a,b) in the zy-plane where f is
differentiable, and we recall that the formal definition of f,(a,b) is
fla+uih,b+ush) — f(a,b)
h )

fula,b) = lim
so we want to show that the limit simplifies to

fola,b)ur + fyla,b)us . (%)

Now we can certainly rewrite the difference quotient in the definition in the following form, dividing it

into one part where the z-value varies while y remains fixed and the other where the reverse holds:
fla+urh,b+ugh) — f(a,b)  fla+uih,b+ush) — f(a,b+ ugh) f(a,b+ugh) — f(a,b)
= uy + ug . (¥%)
h ulh Ugh

Because the change in the z-value in the first term is uih, we have arranged for the denominator to have
that value, in hopes that it will approach the partial derivative of f with respect to x; and similarly for y
in the second term. Now as h — 0, we also have ush — 0, so the fraction [f(a,b + ush) — f(a,b)]/(uzh)
in the second term goes to fy(a,b). And the factors u; and ug are constants. That leaves the fraction
[f(a 4+ urh,b+ ush) — f(a,b+ ugh)]/(u1h), which we need to show goes to f,(a,b) as h — 0. (Later we
will want to divide by w1, so let us remark now that if u; = 0, we already know that the formula (x) holds,
because the first term is 0. So for the rest of the proof we may safely assume that u; # 0.)

Let us give labels to some points in the xy-plane: P(a + uih,b), Q(a + uih,b + ugh), R(a,b) and
S(a,b+ ugh). Also, if T'(c,d) is any point in the zy-plane, we will write f(7') in place of f(c,d). Then as
h — 0, P, Q and S all slide towards R, and the limit of the quotient (f(S) — f(R))/(u1h) is f.(a,b) by
definition. But the numerator of the difference quotient we are studying comes from the other side of the
vectangle: [f(a -+ urh,b+ ush) — f(a,b-+ush)]/(urh) = (F(Q) — £(P))/(urh).




To show that these two have the same limit, we need to use the full strength of differentiability, as
discussed in Section 13.10 of the text: We let ¢(z,y) denote the tangent plane to the graph of f at R(a,b).

Differentiability says that, as a point T' (in the xy-plane) approaches R, the graph of f is so close to its
tangent plane that the quotient (f(7') — t(T))/(T'R) approaches 0 — though its denominator, the distance
from T to R, is approaching 0, the numerator, the vertical distance between surface and tangent plane at T,
is approaching 0 even faster.

We want to show that the difference between (f(Q) — f(P))/(u1h) (which we want to know approaches
fz(a,b) as h — 0) and (f(S)— f(R))/(urh) (which we know approaches f,(a,b)) approaches 0. So we rewrite
that difference by breaking its numerator into parts: the values of the corresponding differences ¢(Q) — t(P)
and t(S) —t(R) on the tangent plane (which are equal, because it is a plane and QP and SR are on opposite
sides of a rectangle) and the vertical distances between the tangent plane and the surface f. The vertical
distance at R is 0, because the plane is tangent there. So we get:
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Because the distances from @), P and S to R are h, u1h and ush respectively, the last three terms approach
0 as h — 0 by differentiability, so

i JQ = F(P) _ 1) - S(R)

h—0 uh h—0 urh

= fas(avb) .

Thus, taking the limit as h — 0 in (*x*) gives the desired formula (*) and the proof is complete.



