
Derivation of the Directional Derivative Formula

We let ~u = u1~ı+ u2~ be a fixed unit vector in the xy-plane, and as usual, we let z = f(x, y). We want to
show that the simple formula for the directional derivative

f~u = fxu1 + fyu2

is valid wherever f is a differentiable function. We fix a particular point (a, b) in the xy-plane where f is
differentiable, and we recall that the formal definition of fu(a, b) is

fu(a, b) = lim
h→0

f(a+ u1h, b+ u2h)− f(a, b)
h

;

so we want to show that the limit simplifies to

fx(a, b)u1 + fy(a, b)u2 . (∗)

Now we can certainly rewrite the difference quotient in the definition in the following form, dividing it
into one part where the x-value varies while y remains fixed and the other where the reverse holds:

f(a+ u1h, b+ u2h)− f(a, b)
h

=
f(a+ u1h, b+ u2h)− f(a, b+ u2h)

u1h
u1 +

f(a, b+ u2h)− f(a, b)
u2h

u2 . (∗∗)

Because the change in the x-value in the first term is u1h, we have arranged for the denominator to have
that value, in hopes that it will approach the partial derivative of f with respect to x; and similarly for y
in the second term. Now as h → 0, we also have u2h → 0, so the fraction [f(a, b + u2h) − f(a, b)]/(u2h)
in the second term goes to fy(a, b). And the factors u1 and u2 are constants. That leaves the fraction
[f(a + u1h, b + u2h) − f(a, b + u2h)]/(u1h), which we need to show goes to fx(a, b) as h → 0. (Later we
will want to divide by u1, so let us remark now that if u1 = 0, we already know that the formula (∗) holds,
because the first term is 0. So for the rest of the proof we may safely assume that u1 6= 0.)

Let us give labels to some points in the xy-plane: P (a + u1h, b), Q(a + u1h, b + u2h), R(a, b) and
S(a, b + u2h). Also, if T (c, d) is any point in the xy-plane, we will write f(T ) in place of f(c, d). Then as
h → 0, P , Q and S all slide towards R, and the limit of the quotient (f(S) − f(R))/(u1h) is fx(a, b) by
definition. But the numerator of the difference quotient we are studying comes from the other side of the
rectangle: [f(a+ u1h, b+ u2h)− f(a, b+ u2h)]/(u1h) = (f(Q)− f(P ))/(u1h).
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To show that these two have the same limit, we need to use the full strength of differentiability, as
discussed in Section 13.10 of the text: We let t(x, y) denote the tangent plane to the graph of f at R(a, b).

Differentiability says that, as a point T (in the xy-plane) approaches R, the graph of f is so close to its
tangent plane that the quotient (f(T ) − t(T ))/(TR) approaches 0 — though its denominator, the distance
from T to R, is approaching 0, the numerator, the vertical distance between surface and tangent plane at T ,
is approaching 0 even faster.

We want to show that the difference between (f(Q)− f(P ))/(u1h) (which we want to know approaches
fx(a, b) as h→ 0) and (f(S)−f(R))/(u1h) (which we know approaches fx(a, b)) approaches 0. So we rewrite
that difference by breaking its numerator into parts: the values of the corresponding differences t(Q)− t(P )
and t(S)− t(R) on the tangent plane (which are equal, because it is a plane and QP and SR are on opposite
sides of a rectangle) and the vertical distances between the tangent plane and the surface f . The vertical
distance at R is 0, because the plane is tangent there. So we get:

f(Q)− f(P )
u1h

− f(S)− f(R)
u1h

=
t(Q)− t(P )

u1h
− t(S)− t(R)

u1h
+
f(Q)− t(Q)

u1h
− f(P )− t(P )

u1h
− f(S)− t(S)

u1h

= 0 +
f(Q)− t(Q)

h

(
1
u1

)
− f(P )− t(P )

u1h
− f(S)− t(S)

u2h

(
u2

u1

)
Because the distances from Q, P and S to R are h, u1h and u2h respectively, the last three terms approach
0 as h→ 0 by differentiability, so

lim
h→0

f(Q)− f(P )
u1h

= lim
h→0

f(S)− f(R)
u1h

= fx(a, b) .

Thus, taking the limit as h→ 0 in (∗∗) gives the desired formula (∗) and the proof is complete.
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