Problems 14.1, Page 183

- 2. (a) Local maximum (b) Saddle point (c) Local minimum. (d) None of these
- 7. $f_x = (x + y)y + (xy + 1)1 = 2xy + y^2 + 1$ and $f_y = (x + y)x + (xy + 1)1 = x^2 + 2xy + 1$, so where both are equal to 0, we have $x^2 = -2xy 1 = y^2$, so $x = \pm y$. Taking the plus sign gives $3x^2 + 1 = 0$, so we get no such points; and from y = -x we get $-x^2 + 1 = 0$, so $x = \pm 1$. So the critical points are (1, -1) and (-1, 1). Now $f_{xx} = 2y$, $f_{xy} = 2x + 2y$, and $f_{yy} = 2x$. So at (1, -1) we have D = (-2)(2) 0 < 0, and at (-1, 1) we have D = (2)(-2) 0 < 0, so both are saddle points.
- 8. $f_x = 8y (x + y)^3$ and $f_y = 8x (x + y)^3$, so where both are 0 we have $y = \frac{1}{8}(x + y)^3 = x$, and from $8x 8x^3 = 0$ we see that the critical points are (0,0), (1,1) and (-1,-1). Now $f_{xx} = -3(x + y)^2 = f_{yy}$, and $f_{xy} = 8 3(x + y)^2$, so in general $D = -(64 48(x + y)^2)$. Hence at (0,0), (1,1) and (-1,-1) respectively, D = -64, 128 and 128. So (0,0) is a saddle point, and because $f_{xx} < 0$ at (1,1) and (-1,-1), these are local maxima.
- 9. $E_x = \sin x$, and $E_y = 2y$, so both are 0 at $(\pi k, 0)$ where k is any integer. Now $E_{xx} = \cos x$, $E_{xy} = 0$, and $E_{yy} = 2$, so $D = 2\cos x$, which is negative at $x = \pi k$ when k is odd so $(\pi k, 0)$ is a saddle point when k is odd and positive when k is even and because E_{xx} is also positive there, $(\pi k, 0)$ is a local minimum when k is even.