Problems 15.2, Page 233

These solutions include several problems that were not assigned: The original assignment was too long,
but I had worked so hard typing the solutions that I couldn’t bring myself to delete them.

6. The line through (—1,1) and (3,-2) sy —1 = 3:2(:}) (z—(-1)) ory=—2z+ 1 = (1—3x)/4, so the
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7. The line through (1,0) and (4,1)isy—0=1=3(z — 1) or y = 3o —
can be written
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8. The line through (0,1) and (1,3) is y — 1 = 3=L (2 — 0) or # = (y — 1)/2, and the one through (1, 3) and
2,)isy—3=12@-1)oror=1-1(
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10. The diagrams of the regions of integration for the next several problems are drawn below. In the middle
of the next computation, we find that the substitution u = z? is useful (so that du = 2xdx and as x
varies from 0 to 2, u goes from 0 to 4):
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11. In the middle of the next computation, we find that integration by parts, with v = z, dv = sinx dz, is

useful:
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desired integral can be written

+ = (2 —1)/3, so the desired integral
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3) = (5 —y)/2, so the desired integral can be written

~ 26.8
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—5cosb +cosl+sind —sinl ~ —2.68
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14. (a) See below.
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(b) Rewriting x = —(y — 4)/2 gives y = 4 — 2z, so the desired integral is
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19. The surface cuts the xy-plane (i.e., 2 = 0) in the circle 0 = 25 — 22 — y?, or 22 + y? = 25, so we want to
integrate over the interior of that circle:
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20. The surface cuts the plane z = 16 in the circle 25 — 22 — y? = 16, or 22 + y? = 9, so the region of
integration is the interior of that circle:
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The two vertical planes meet the zy-plane (i.e., 2 = 0) in the z-axis and the line y = = + 4 respectively,
and the slanted plane meets the xy-plane in the line 2z + y = 4. So the region of integration is the
interior of the triangle formed by those three lines. The other two lines meet the z-axis (i.e., y — 0) at
(—4,0) and (2,0); and they meet each other at (0,4). For a fixed y-value in this triangle, by solving the
other two lines for z, we see that the x-values run from y — 4 to (4 — y)/2. So the desired integral is
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