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12. With the substitution u = r? (so that du = 2r dr and, as r varies from 0 to 2, u varies from 0 to 4), we

get
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The graphs for #15 and #16:
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19. The two surfaces meet where /8 — 22 — y2 = /22 + 42, or 22 +y? = 4, the circle with radius 2 centered
at x =0, y = 0 (and z = 2), so the solid exists over the disc of radius 2 centered at the origin in the
zy-plane. So:
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(b) We want 0 to decrease as r increases, so we want the factor of § with r in it to be 4 — r; and as 6
moves from /2 to 7 and then to 37/2, we want § first to decrease and then to increase, so we want the
factor of  with 6 in it to be 2 + cosf. So the best answer of these three is (i).
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- ([272 - ;r?’} 1) ([20 + sme]?’”/z) = (30— 21) (27 + (=1 — 1)) = 18(7 — 1) ~ 38.5



