Problems 16.3, Page 303

- 3. A cylindrical surface, of radius 5 and height 7, resting on the xy-plane centered around the z-axis.
- 4. A spiral (helix) of constant radius 5, starting at (5,0,0) and making one turn around the z-axis during which it rises to 10π .
- 5. A cone of height and base (or rather top) radius 5, with point at the origin and widening around the positive z-axis
- 8. A cylindrical surface rising vertically from the parabola $y = x^2$, with $-5 \le x \le 5$, in the xy-plane, and with height 7.
- 9. One answer (the one suggested by Figure 16.45) is $x = a \cos \theta$, $y = a \sin \theta$, z = z, with $0 \le \theta \le 2\pi$, $0 \le z \le h$.
- 12. (a) To get 2+s = 4, we must have s = 2, and to have 4t = 12, we must have t = 3, and then 3+s+t = 8, so this point is on the plane.
 (b) To get 2 + s = 1, we must have s = -1, and to have 4t = 3, we must have t = 3/4, and then 3+s+t = 2.75, not 2, so this point is not on the plane.
- 17. Taking a cue from spherical coordinates: $x = 5 \sin \phi \cos \theta$, $y = 5 \sin \phi \sin \theta$, $z = 5 \cos \phi$, where $0 \le \phi \le \pi$, $0 \le \theta \le 2\pi$.
- 18. $x = 2 + 5\sin\phi\cos\theta$, $y = -1 + 5\sin\phi\sin\theta$, $z = 3 + 5\cos\phi$, where $0 \le \phi \le \pi$, $0 \le \theta \le 2\pi$.
- 30. $x^2 + y^2 = 9$, $x \ge 0$, $1 \le z \le 2$. This is half a cylinder, of radius 3, centered on the z-axis, in front of the yz-plane, from 1 to 2 units above the xy-plane.
- 31. $x^2 + y^2 + z^2 = 1$, $x, y, z \ge 0$, $x^2 + y^2 \le 1$. This is the eighth of the sphere of radius 1 centered at the origin that lies in the first octant (where all the coordinates are positive).

