Problems 18.3, Page 364

2. Natural parameterizations are given by, for A: x = y = t, $0 \le t \le 1$; for B: x = t, $y = t^2$, $0 \le t \le 1$; and C: x = t, y = 0 for $0 \le t \le 1$ and x = 1, y = t - 1 for $1 \le t \le 2$:

$$\begin{aligned} \int_{A} \vec{F} \cdot d\vec{r} &= \int_{0}^{1} (t\vec{i} + t\vec{j}) \cdot (dt\vec{i} + dt\vec{j}) = 2\int_{0}^{1} t \, dt = \left[t^{2}\right]_{0}^{1} = 1\\ \int_{B} \vec{F} \cdot d\vec{r} &= \int_{0}^{1} (t\vec{i} + t^{2}\vec{j}) \cdot (dt\vec{i} + 2t \, dt\vec{j}) = \int_{0}^{1} (t + 2t^{3}) dt = \left[\frac{1}{2}t^{2} + \frac{1}{2}x^{4}\right]_{0}^{1} = 1\\ \int_{C} \vec{F} \cdot d\vec{r} &= \int_{0}^{1} t \, dt + \int_{1}^{2} (t - 1) dt = \left[\frac{1}{2}t^{2}\right]_{0}^{1} + \left[\frac{1}{2}(t - 1)^{2}\right]_{1}^{2} = \frac{1}{2} + \frac{1}{2} = 1\end{aligned}$$

- 3. $\partial F_2/\partial x = 0$, $\partial F_1/\partial y = 0$, so \vec{F} could be a gradient. $(f(x,y) = \frac{1}{2}x^2)$ is a potential function.)
- 4. $\partial G_2/\partial x = -2y$, $\partial G_1/\partial y = -2y$, so \vec{G} could be a gradient. $(f(x,y) = \frac{1}{3}x^3 xy^2)$ is a potential function.)
- 13. (a) C_1 might be the straight line path along the x-axis; C_2 might be the top half of the circle centered at the origin, of radius half of the distance from P to Q; and C_3 might be the bottem half of the same circle.
 - (b) No, because it is not path-independent.
- 15. Let $\vec{F} = x\vec{j}$, as in #13 which we know is not path-independent and let C be the figure-8 crossing at the origin, starting at P and going around (through Q) once to return to P.
- 16. \vec{F} may be a constant, in which case there is no change in \vec{F} , but the line integral can have nonzero value. Note: By the FTC for line integrals, $\int_C \nabla f \cdot d\vec{r}$ is the total change in f, not in ∇f , along C.
- 17. General counterexample: C is closed, \vec{F} and \vec{G} are gradients of functions f and g with $f g \neq \text{constant}$.