
CHAPTER 6

Markov Chains

6.1. Introduction

A (finite) Markov chain is a process with a finite number of states (or outcomes,
or events) in which the probability of being in a particular state at step n+1 depends
only on the state occupied at step n.

Let S= {S1,S2, . . . ,Sr} be the possible states. Let

!x(n) =








x1(n)
x2(n)
...

xr(n)








(6.1)

be the vector of probabilities of each state at step n. That is, the ith entry of!x(n) is
the probability that the process is in state Si at step n. For such a probability vector,
x1(n)+ x2(n)+ · · ·+ xr(n) = 1.

Let
ai j = Prob( State n+1 is Si | State n is Sj), (6.2)

and let

A=








a11 a12 · · · a1r
a21 a22 · · · a2r
... . . .
ar1 arr








(6.3)

That is, ai j is the (conditional) probability of being in state Si at step n+ 1 given
that the process was in state Sj at step n. A is called the transition matrix. Note that
A is a stochastic matrix: the sum of the entries in each column is 1. A contains all
the conditional probabilities of the Markov chain. It can be useful to label the rows
and columns of A with the states, as in this example with three states:

State n
︷ ︸︸ ︷

S1 S2 S3

State n+1









S1
S2
S3






a11 a12 a13
a21 a22 a23
a31 a32 a33






The fundamental property of a Markov chain is that

!x(n+1) = A!x(n). (6.4)
117



118 6. MARKOV CHAINS

Given an initial probability vector!x(0), we can determine the probability vector at
any step n by computing the iterates of a linear map.

The information contained in the transition matrix can also be represented in a
transition diagram. This is the graph Γ(A) associated with the transition matrix A.
If ai j > 0, the graph has an edge from state j to state i, and we label the edge with
the value ai j. Examples are given in the following discussions.

We will consider two special cases of Markov chains: regular Markov chains
and absorbing Markov chains. Generalizations of Markov chains, including con-
tinuous time Markov processes and infinite dimensional Markov processes, are
widely studied, but we will not discuss them in these notes.

Exercises

6.1.1. Draw the transition diagram for each of the following matrices.

(a)
[

0 1/4
1 3/4

]

(b)





0.5 0.5 0.3
0.5 0.25 0.7
0 0.25 0




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6.2. Regular Markov Chains

DEFINITION 6.2.1. A Markov chain is a regular Markov chain if the transition
matrix is primitive. (Recall that a matrix A is primitive if there is an integer k > 0
such that all entries in Ak are positive.)

Suppose a Markov chain with transition matrix A is regular, so that Ak > 0
for some k. Then no matter what the initial state, in k steps there is a positive
probability that the process is in any of the states.

Recall that the solution to the linear map!x(n+1) = A!x(n) has the form

!x(n) = c1λ n1!v1+ c2λ n2!v2+ · · · , (6.5)

assuming that the eigenvalues are real and distinct. (Complex eigenvalues con-
tribute terms involving sin(nθ j) and cos(nθ j), where θ j is the angle of the complex
eigenvalues λ j.) The transition matrix A for a Markov chain is stochastic, so the
largest eigenvalue is λ1 = 1. The transition matrix is primitive for a regular Markov
chain, so by the Perron-Frobenius Theorem for primitive matrices, λ1 is a simple
eigenvalue, and all the other eigenvalues have magnitude less than 1. This implies
that the solution to the linear map has the form

!x(n) = c1!v1+{expressions that go to 0 as n→ ∞} . (6.6)

Since!x(n) must be a probability vector (i.e. it has nonnegative entries whose sum
is 1) for all n, the term c1!v1 must also be a probability vector. In other words, we
can replace c1!v1 with !w, where !w is the eigenvector associated with λ1 = 1 that is
also a probability vector.

In summary, the main result for a regular Markov chain is the following theo-
rem.

THEOREM 6.1. Let A be the transition matrix associated with a regular Markov
chain. Let!w be the (unique) eigenvector of A associated with the eigenvalue λ1 = 1
that is also a probability vector. Then An!x(0) →!w as n→ ∞ for any initial proba-
bility vector!x(0). Thus !w gives the long-term probability distribution of the states
of the Markov chain.

! EXAMPLE 6.2.1 Sunny or Cloudy? A meteorologist studying the weather
in a region decides to classify each day as simply sunny or cloudy. After analyzing
several years of weather records, he finds:

• the day after a sunny day is sunny 80% of the time, and cloudy 20% of
the time; and

• the day after a cloudy day is sunny 60% of the time, and cloudy 40% of
the time.

We can setup up a Markov chain to model this process. There are just two states:
S1 = sunny, and S2 = cloudy. The transition diagram is
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0.4
State 1
Sunny

State 2
Cloudy

0.8 0.2

0.6
and the transition matrix is

A=

[

0.8 0.6
0.2 0.4

]

. (6.7)

We see that all entries of A are positive, so the Markov chain is regular.
To find the long-term probabilities of sunny and cloudy days, we must find

the eigenvector of A associated with the eigenvalue λ = 1. We know from Linear
Algebra that if !v is an eigenvector, then so is c!v for any constant c "= 0. The
probability vector !w is the eigenvector that is also a probability vector. That is, the
sum of the entries of the vector !w must be 1.

We solve
A!w = !w

(A− I)!w =!0
(6.8)

Now
A− I =

[

−0.2 0.6
0.2 −0.6

]

(6.9)

If you have recently studied Linear Algebra, you could probably write the answer
down with no further work, but we will show the details here. We form the aug-
mented matrix and use Gaussian elimination:




−0.2 0.6

... 0

0.2 −0.6
... 0



 →




1 −3

... 0

0 0
... 0



 (6.10)

which tells us w1 = 3w2, or w1 = 3s, w2 = s, where s is arbitrary, or

!w = s
[

3
1

]

(6.11)

The vector !w must be a probability vector, so w1+w2 = 1. This implies 4s= 1 or
s= 1/4. Thus

!w =

[

3/4
1/4

]

. (6.12)

This vector tells us that in the long run, the probability is 3/4 that the process will
be in state 1, and 1/4 that the process will be in state 2. In other words, in the long
run 75% of the days are sunny and 25% of the days are cloudy. "

! EXAMPLE 6.2.2 Here are a few examples of determining whether or not a
Markov chain is regular.

(1) Suppose the transition matrix is

A=

[

1/3 0
2/3 1

]

. (6.13)
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We find

A2 =

[

(1/3)2 0
(2/3)(1+1/3) 1

]

, A3 =

[

(1/3)3 0
(2/3)(1+1/3+(1/3)2) 1

]

, (6.14)

and, in general,

An =

[

(1/3)n 0
(2/3)(1+1/3+ · · ·+(1/3)n−1) 1

]

. (6.15)

The upper right entry in An is 0 for all n, so the Markov chain is not
regular.

(2) Here’s a simple example that is not regular.

A=

[

0 1
1 0

]

(6.16)

Then
A2 = I, A3 = A, etc. (6.17)

Since An = I if n is even and An = A if n is odd, A always has two entries
that are zero. Therefore the Markov chain is not regular.

(3) Let

A=





1/5 1/5 2/5
0 2/5 3/5
4/5 2/5 0



 (6.18)

The transition matrix has two entries that are zero, but

A2 =





9/25 7/25 5/25
12/25 10/25 6/25
4/25 8/25 14/25



 . (6.19)

Since all the entries of A2 are positive, the Markov chain is regular.
"
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Exercises

6.2.1. Let

A=





19/20 1/10 1/10
1/20 0 0
0 9/10 9/10



 (6.20)

be the transition matrix of a Markov chain.
(a) Draw the transition diagram that corresponds to this transition matrix.
(b) Show that this Markov chain is regular.
(c) Find the long-term probability distribution for the state of the Markov

chain.

6.2.2. Consider the following transition diagram:

1.0

A B
0.25

C

0.5

0.25
0.5

0.5

(a) Find the transition matrix, and show that the Markov chain is regular.
(b) Find the long-term probability distribution of the states A, B, and C.

6.2.3. An anthropologist studying a certain culture classifies the occupations
of the men into three categories: farmer, laborer, and professional. The anthropol-
ogist observes that:

• If a father is a farmer, the probabilities of the occupation of his son are:
0.6 farmer, 0.2 laborer, and 0.2 professional.

• If a father is a laborer, the probabilities of the occupation of his son are:
0.4 farmer, 0.5 laborer, and 0.1 professional.

• If a father is a professional, the probabilities of the occupation of his son
are: 0.2 farmer, 0.2 laborer, 0.6 professional.

Assume that these probabilities persist for many generations. What will be the
long-term distribution of male farmers, laborers and professionals in this culture?
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6.3. Absorbing Markov Chains

We consider another important class of Markov chains.

DEFINITION 6.3.1. A state Sk of a Markov chain is called an absorbing state
if, once the Markov chains enters the state, it remains there forever. In other words,
the probability of leaving the state is zero. This means akk = 1, and ajk = 0 for
j "= k.

DEFINITION 6.3.2. A Markov chain is called an absorbing chain if
(i) it has at least one absorbing state; and
(ii) for every state in the chain, the probability of reaching an absorbing state

in a finite number of steps is nonzero.

An essential observation for an absorbing Markov chain is that it will eventu-
ally enter an absorbing state. (This is a consequence of the fact that if a random
event has a probability p> 0 of occurring, then the probability that it does not occur
is 1− p, and the probability that it does not occur in n trials is (1− p)n. As n→∞,
the probability that the event does not occur goes to zero1.) The non-absorbing
states in an absorbing Markov chain are called transient states.

Suppose an absorbing Markov chain has k absorbing states and " transient
states. If, in our set of states, we list the absorbing states first, we see that the
transition matrix has the form

Absorbing States Transient States
︷ ︸︸ ︷

S1 S2 · · · Sk
︷ ︸︸ ︷

Sk+1 · · · Sk+"

S1
S2
...
Sk
Sk+1
...

Sk+"
















1 0 · · · 0 p1,k+1 · · · p1,k+"

0 1
...

...
...

... . . . 0
0 · · · 0 1 pk,k+1 · · · pk,k+"

0 · · · · · · 0 pk+1,k+1 · · · pk+1,k+"
...

...
...

...
0 · · · · · · 0 pk+",k+1 · · · pk+",k+"
















That is, we may partition A as

A=

[

I R
0 Q

]

(6.21)

where I is k× k, R is k× ", 0 is "× k and Q is "× ". R gives the probabilities of
transitions from transient states to absorbing states, while Q gives the probabilities
of transitions from transient states to transient states.

Consider the powers of A:

A2 =

[

I R(I+Q)
0 Q2

]

, A3 =

[

I R(I+Q+Q2)
0 Q3

]

, (6.22)

1“Infinity converts the possible into the inevitable.” – Norman Cousins
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and, in general,

An =

[

I R(I+Q+Q2+ · · ·+Qn−1)
0 Qn

]

=

[

I R∑n−1
i=0 Q

i

0 Qn

]

, (6.23)

Now I claim that2

lim
n→∞

An =

[

I R(I−Q)−1

0 0

]

(6.24)

That is, we have
(1) Qn → 0 as n→ ∞, and

(2)
∞

∑
i=0

Qi = (I−Q)−1.

The first claim, Qn → 0, means that in the long run, the probability is 0 that the
process will be in a transient state. In other words, the probability is 1 that the
process will eventually enter an absorbing state. We can derive the second claim
as follows. Let

U =
∞

∑
i=0

Qi = I+Q+Q2+ · · · (6.25)

Then

QU =Q
∞

∑
i=0

Qi =Q+Q2+Q3+ · · ·= (I+Q+Q2+Q3+ · · · )− I =U− I. (6.26)

Then QU =U − I implies
U −UQ= I
U(I−Q) = I

U = (I−Q)−1,

(6.27)

which is the second claim.
The matrix R(I−Q)−1 has the following meaning. The column i of R(I−Q)−1

gives the probabilities of ending up in each of the absorbing states, given that the
process started in the ith transient state.

There is more information that we can glean from (I−Q)−1. For convenience,
call the transient states T1, T2, . . . , T". (So Tj = Sk+ j.) Let V (Ti,Tj) be the expected
number of times that the process is in state Ti, given that it started in Tj. (V stands
for the number of “visits”.) Also recall that Q gives the probabilities of transitions
from transient states to transient states, so

qi j = Prob( State n+1 is Ti | State n is Tj) (6.28)

I claim that V (Ti,Tj) satisfies the following equation:

V (Ti,Tj) = ei j +qi1V (T1,Tj)+qi2V (T2,Tj)+ · · ·+qi"V (T",Tj) (6.29)

2There is a slight abuse of notation in the formula given. I use the symbol 0 to mean “a matrix
of zeros of the appropriate size”. The two 0’s in the formula are not necessarily the same size. The 0
in the lower left is "×k, while the 0 in the lower right is "× ".
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where

ei j =

{

1 if i= j
0 otherwise

(6.30)

Why? Consider just the term qi1V (T1,Tj). Given that the process started in Tj,
V (T1,Tj) gives the expected number of times that the process will be in T1. The
number qi1 gives the probability of making a transition from T1 to Ti. Therefore, the
product qi1V (T1,Tj) gives the expected number of transitions from T1 to Ti, given
that the process started in Tj. Similarly, qi2V (T2,Tj) gives the expected number
of transitions from T2 to Ti, and so on. Therefore the total number of expected
transition to Ti is qi1V (T1,Tj)+qi2V (T2,Tj)+ · · ·+qi"V (T",Tj).

The expected number of transitions into a state is the same as the expected
number of times that the process is in a state, except in one case. Counting the
transitions misses the state in which the process started, since there is no “transi-
tion” into the initial state. This is why the term ei j is included in (6.29). When we
consider V (Ti,Ti), we have to add 1 to the expected number of transitions into Ti to
get the correct expected number of times that the process was in Ti.

Equation (6.29) is actually a set of "2 equations, one for each possible (i, j). In
fact, it is just one component of a matrix equation. Let

N =








V (T1,T1) V (T1,T2) · · · V (T1,T")
V (T2,T1) V (T2,T2)

... . . .
V (T",T1) V (T",T")








(6.31)

Then equation (6.29) is the (i, j) entry in the matrix equation

N = I+QN. (6.32)

(You should check this yourself!) Solving (6.32) gives
N−QN = I

(I−Q)N = I

N = (I−Q)−1
(6.33)

Thus the (i, j) entry of (I−Q)−1 gives the expected number of times that the pro-
cess is in the ith transient state, given that it started in the jth transient state. It
follows that the sum of the jth column of N gives the expected number of times
that the process will be in some transient state, given that the process started in the
jth transient state.

! EXAMPLE 6.3.1 The Coin and Die Game. In this game there are two play-
ers, Coin and Die. Coin has a coin, and Die has a single six-sided die. The rules
are:

• When it is Coin’s turn, he or she flips the coin. If the coin turns up heads,
Coin wins the game. If the coin turns up tails, it is Die’s turn.

• When it is Die’s turn, he or she rolls the die. If the die turns up 1, Die
wins. If the die turns up 6, it is Coin’s turn. Otherwise, Die rolls again.
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When it is Coin’s turn, the probability is 1/2 that Coin will win and 1/2 that it will
become Die’s turn. When it is Die’s turn, the probabilities are

• 1/6 that Die will roll a 1 and win,
• 1/6 that Die will roll a 6 and it will become Coin’s turn, and
• 2/3 that Die will roll a 2, 3, 4, or 5 and have another turn.

To describe this process as a Markov chain, we define four states of the process:
• State 1: Coin has won the game.
• State 2: Die has won the game.
• State 3: It is Coin’s turn.
• State 4: It is Die’s turn.

We represent the possible outcomes in the following transition diagram:

1/6

State 1
Coin Wins

State 3
Coin’s Turn

State 2
Die Wins

State 4
Die’s Turn

1

1

2/3

1/2

1/6

1/2

This is an absorbing Markov chain. The absorbing states are State 1 and State 2, in
which one of the players has won the game, and the transient states are State 3 and
State 4.

The transition matrix is

A=







1 0 1/2 0
0 1 0 1/6
0 0 0 1/6
0 0 1/2 2/3







=












1 0
... 1/2 0

0 1
... 0 1/6

. . . . . . . . . . . . . . . . . .

0 0
... 0 1/6

0 0
... 1/2 2/3












=

[

I R
0 Q

]

(6.34)

where

R=

[

1/2 0
0 1/6

]

and Q=

[

0 1/6
1/2 2/3

]

. (6.35)

We find

I−Q=

[

1 −1/6
−1/2 1/3

]

, (6.36)
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so
N = (I−Q)−1 =

[

4/3 2/3
2 4

]

, (6.37)

and
R(I−Q)−1 =

[

2/3 1/3
1/3 2/3

]

(6.38)

Recall that the first column of R(I−Q)−1 gives the probabilities of entering State
1 or State 2 if the process starts in State 3. “Starts in State 3” means Coin goes
first, and “State 1” means Coin wins, so this matrix tells us that if Coin goes first,
the probability that Coin will win is 2/3, and the probability that Die will win is
1/3. Similarly, if Die goes first, the probability that Coin will win is 1/3, and the
probability that Die will win is 2/3.

From (6.37), we can also conclude the following:
(1) If Coin goes first, then the expected number of turns for Coin is 4/3, and

the expected number of turns for Die is 2. Thus the expected total number
of turns is 10/3 ≈ 3.33.

(2) If Die goes first, then the expected number of turns for Coin is 2/3, and
the expected number of turns for Die is 4. Thus the expected total number
of turns is 14/3 ≈ 4.67.

The following table gives the results of an experiment with the Coin and Die
Game along with the predictions of the theory. A total of 220 games were played
in which Coin went first. Coin won 138 times, and the total number of turns was
821, for an average of 3.73 turns per game.

Quantity Predicted Experiment
Percentage Won by Coin 66.7 62.7
Average Number of Turns per Game 3.33 3.73

It appears that in this experiment, Die won more often than predicted by the
theory. Presumably if the games was played the game a lot more, the experimental
results would approach the predicted results. "


