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Theorem: Every finite abelian group is isomorphic to a direct
product of cyclic groups of orders that are powers of prime
numbers. (And of course the product of the powers of orders of
these cyclic groups is the order of the original group.) In
symbols: If G is a finite abelian group, then

G ∼= Z
p

k1
1

× Z
p

k2
2

× · · · × Z
pkn

n

where the pj ’s are prime integers, the kj ’s are positive integers,
and

|G | = pk1
1 · p

k2
2 · · · · · p

kn
n .



Statement

From Exam III

p-groups

Proof

Invariants

“Internal” Direct Product

Prop: G group, H, K subgroups. If

(1) H ∩ K = {e},
(2) ∀ h ∈ H, k ∈ K , hk = kh, and

(3) HK = G ,

then H × K → G : (h, k)→ hk is an isomorphism.
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Familiar fact

G abelian group, m ∈ N:
H = {g ∈ G : o(g)|m} is a subgroup of G .

(Recall: o(g)|m ⇐⇒ gm = e.)



Statement

From Exam III

p-groups

Proof

Invariants

Sooo . . .

G abelian, |G | = mn where gcd(m, n) = 1,
H = {g ∈ G : o(g)|m}, K = {g ∈ G : o(g)|n}

=⇒ G ∼= H × K .

Continuing:

G ∼= G (p1)× G (p2)× · · · × G (pn), where

p1, p2, . . . , pn are the primes dividing |G |, and

G (pj) = {g ∈ G : o(g) is a power of pj}.
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Reduce to p-group

So we only need to rewrite each G (p) as a product of Zpn ’s.

So assume every element of G has order a power of a given
prime p (i.e., G is a “p-group”).
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Lemma and corollary

Lemma: If H is a finite abelian group and q is a prime dividing
|H|, then H has an element of order q.

Proof: Assume BWOC false, and suppose H is the smallest
counterexample (for q). Pick g ∈ H − {e} and form H/〈g〉.
No elt of H has order a multiple of q, so gcd(o(g), q) = 1. But
|H| = o(g)|H/〈g〉|, so q||H/〈g〉|. Because H was the smallest
counterexample, H/〈g〉 has an element h〈g〉 of order q. But
then q|o(h〈g〉)|o(h), so h has a power with order q, →←

Cor: A finite abelian p-group has order a power of p.



Statement

From Exam III

p-groups

Proof

Invariants

The hard part (1)

The proof now proceeds by proving that, if g in G has the
highest order pn, then there is subgroup H of G for which
G ∼= 〈g〉 × H.

Induction again:

Assume smaller p-groups have the right form.

Write G/〈g〉 ∼= 〈〈g〉x1〉 × · · · × 〈〈g〉xn〉.
Argue that we can pick yi in 〈g〉xi so that o(yi ) in G is
equal to o(〈g〉xi ) in G/〈g〉. (See next slide.)

Then argue G ∼= 〈g〉 × 〈y1〉 × . . . 〈yn〉. (See slide after
that.)

This will complete the proof of the structure theorem.
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The hard part (2)

The order pi of 〈g〉x in G/〈g〉 divides the order pj of x in G ,

but it may be smaller, because xpi
may be in 〈g〉 without being

e. However, we chose g to have largest order pk in G , so when
we write xpi

= gmpr
where p |/m, then we must have r ≥ i so

that the orders of these two equal elements of G are the same:

o(xpi
) = pj−i o(gmpr

) = pk−r

and k ≥ j . So y = xg−mpr−i
is in 〈g〉x and has order pi .
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The hard part (3)

We want to show that if o(yi ) = o(〈g〉yi ) and

ψ :〈〈g〉y1〉 × · · · × 〈〈g〉yn〉 → G/〈g〉 :

(〈g〉ym1
1 , . . . , 〈g〉ymn

n ) 7→ 〈g〉ym1
1 . . . ymn

m

is an isomorphism, then

ϕ :〈g〉 × 〈y1〉 × · · · × 〈yn〉 → G :

(gm, ym1
1 , . . . , ymn

n ) 7→ gmym1
1 . . . ymn

n

is also an isomorphism.
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The hard part (4)

Because G is abelian, ϕ is a homomorphism. It is onto G
because ψ is onto: The image in G/〈g〉 of any element h of G
has the form

〈g〉h = 〈g〉ym1
1 . . . ymn

n , so h = gmym1
1 . . . ymn

n

for some m. And ϕ is 1-1 because ker(ϕ) is trivial:

|〈g〉 × 〈y1〉× · · · × 〈yn〉|/| ker(ϕ)| = |G | = o(g) · |G/〈g〉|
= o(g) · |〈g〉y1 × · · · × 〈g〉yn|
= o(g) · o(〈g〉y1) · · · · · o(〈g〉yn)

= o(g) · o(y1) · · · · · o(yn)

= |〈g〉 × 〈y1〉 × · · · × 〈yn〉| .
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When isomorphic? (1)

Example: Z5 × Z25 × Z2 × Z3
∼= Z3 × Z2 × Z5 × Z25, by

(a, b, c , d) 7→ (d , c , a, b)

In general:

Zpk(1) × Zpk(2) × · · · × Zpk(n)
∼= Zpj(1) × Zpj(2) × · · · × Zpj(m)

if pk(1), pk(2), . . . , pk(n) are just pj(1), pj(2), . . . , pj(m), maybe
rearranged.
(The isomorphism just rearranges the coordinates.)
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When isomorphic? (2)

To see that the converse is true, note that, if finite abelian
p-groups G and H are isomorphic, then the isomorphism must
take

{g ∈ G : gpk
= e} to {h ∈ H : hpk

= e} .

Now we can express in terms of the k(i)’s the number of
elements in

Zpk(1) × Zpk(2) × · · · × Zpk(n)

whose pk -th power is e. So if they are isomorphic, the lists of
pk(i)’s must be the same (except for how they are arranged).



Statement

From Exam III

p-groups

Proof

Invariants

An example

Suppose

G ∼= Z8 × Z8 × Z4 × Z2 × Z2

× Z27 × Z3 × Z3

× Z5 × Z5 .

Take the direct product of the first groups in each row, then
the second groups, and so on:

Z8 × Z27 × Z5 Z8 × Z3 × Z5 Z4 × Z3 Z2 Z2
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The example, ctnd.

The orders in different rows are relatively prime, so these
“column direct products” are cyclic:

Z8 × Z27 × Z5
∼= Z1080

Z8 × Z3 × Z5
∼= Z120

Z4 × Z3
∼= Z12

Z2
∼= Z2

Z2
∼= Z2

Now we have

Z1080 × Z120 × Z12 × Z2 × Z2
∼= G

and 2|2|12|120|1080.
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Invariants defined

We can do that with any finite abelian group:

G ∼= Zd1 × Zd2 × · · · × Zdn

where dn|dn−1| . . . |d2|d1. The di ’s are called the invariants of
G .

Two finite abelian groups are isomorphic iff they have the same
invariants.
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