In today's 11:20 class, Karen Kelley asked two questions that I couldn't answer immediately. Here are some answers:

The first question was from the text, Exercise 16.29: Must every ring with a prime number of elements be commutative? We saw immediately that if $(R,+, *)$ is a ring for which $|R|$ is a prime number, then $(R,+)$ is a cyclic group. But the question is whether the multiplication $*$ has to be commutative. I claim that it does, because $*$ is distributive over + . To see this, let a be a generator of the additive cyclic group R. I contend that the entire multiplication table for $*$ is determined by the choice of the product $a * a$, and that it turns out to be commutative: Every element of R has the form $n a=a+a+\cdots+a$ (n terms) for some positive integer n (from 1 up to the prime order of R, to be exact, but we don't use that here). Now

$$
\begin{aligned}
(n a) *(m a) & =(a+a+\cdots+a) *(a+a+\cdots+a) \quad(n \text { and } m \text { terms }) \\
& =a * a+a * a+\cdots+a * a \quad(m n \text { terms }) \\
& =n m(a * a)=m n(a * a)=(m a) *(n a)
\end{aligned}
$$

where we have used the fact that multiplication of integers is commutative. Therefore $*$ is commutative, i.e., R is a commutative ring.

The second question may be in the text, but I can't find it. The question was: Find an example of a ring R and an ideal I in it, and an ideal J of I that is not an ideal in R. The example that I've come up with seems to me much harder than it should be, but at least it works. Let $R=\mathbb{R}\left[x, \mathbb{Q}^{+} \cup\{0\}\right]$, the "semigroup ring of $\mathbb{Q}^{+} \cup\{0\}$ over \mathbb{R} ", i.e., all polynomials in x with coefficients in \mathbb{R}, but allowing any nonnegative rational number as an exponent. We get polynomials that look like, for example, $2+x^{1 / 2}+5 x^{2}-3 x^{10 / 3}$. Now let:

$$
S=\{q \in \mathbb{Q}: q \geq 1\} \quad \text { and } \quad T=\{1\} \cup\{q \in \mathbb{Q}: q \geq 2\}
$$

The set of elements with exponents in S is an ideal of R - the product of a polynomial with lowest-degree term at least x^{1} and any other polynomial in R is another with lowest-degree term at least x^{1}. And the set J of polynomials with exponents in T is an ideal in I - in fact, the product of any two elements of I is in J, because its lowest degree term is at least x^{2}. But J is not an ideal in $R: x^{1 / 2} \in R$ and $x^{1} \in J$, but $x^{1 / 2} x^{1}=x^{3 / 2} \notin J$. There must be a simpler example.
P.S.: Here is another example; whether it qualifies as simpler is up to you: Let R be the set of polynomials in x with terms $a x^{n}$ where a is a real number and $n=2 r+3 s$ for some nonnegative integers $r, s-$ so the exponents can be any element of $\mathbb{N} \cup\{0\}$ except 1 . (In the terms of the last example, this R is the semigroup ring of the "numerical semigroup generated by 2 and 3 ".) Now let I be the set of elements of R with zero coefficients in the x^{0} (i.e., constant) and x^{2} terms, and let J be the set of elements of R with zero coefficients in the x^{0}, x^{2}, and x^{5} terms. The product of any two elements of I has lowest exponent at least 6 , so it is in J; so J captures multiplication in I and hence is an ideal there. But J is not an ideal in R, because $x^{3} \in J$ and $x^{2} \in R$ but $x^{5} \notin J$.

