
In today’s 11:20 class, Karen Kelley asked two questions that I couldn’t answer immediately.
Here are some answers:

The first question was from the text, Exercise 16.29: Must every ring with a prime number of
elements be commutative? We saw immediately that if (R, +, ∗) is a ring for which |R| is a prime
number, then (R, +) is a cyclic group. But the question is whether the multiplication ∗ has to be
commutative. I claim that it does, because ∗ is distributive over +. To see this, let a be a generator
of the additive cyclic group R. I contend that the entire multiplication table for ∗ is determined by
the choice of the product a ∗ a, and that it turns out to be commutative: Every element of R has
the form na = a + a + · · ·+ a (n terms) for some positive integer n (from 1 up to the prime order
of R, to be exact, but we don’t use that here). Now

(na) ∗ (ma) = (a + a + · · ·+ a) ∗ (a + a + · · ·+ a) (n and m terms)
= a ∗ a + a ∗ a + · · ·+ a ∗ a (mn terms)
= nm(a ∗ a) = mn(a ∗ a) = (ma) ∗ (na) ,

where we have used the fact that multiplication of integers is commutative. Therefore ∗ is commu-
tative, i.e., R is a commutative ring.

The second question may be in the text, but I can’t find it. The question was: Find an
example of a ring R and an ideal I in it, and an ideal J of I that is not an ideal in R. The
example that I’ve come up with seems to me much harder than it should be, but at least it works.
Let R = R[x, Q+ ∪ {0}], the “semigroup ring of Q+ ∪ {0} over R”, i.e., all polynomials in x with
coefficients in R, but allowing any nonnegative rational number as an exponent. We get polynomials
that look like, for example, 2 + x1/2 + 5x2 − 3x10/3. Now let:

S = {q ∈ Q : q ≥ 1} and T = {1} ∪ {q ∈ Q : q ≥ 2} .

The set of elements with exponents in S is an ideal of R — the product of a polynomial with
lowest-degree term at least x1 and any other polynomial in R is another with lowest-degree term at
least x1. And the set J of polynomials with exponents in T is an ideal in I — in fact, the product
of any two elements of I is in J , because its lowest degree term is at least x2. But J is not an ideal
in R: x1/2 ∈ R and x1 ∈ J , but x1/2x1 = x3/2 /∈ J . There must be a simpler example.

P.S.: Here is another example; whether it qualifies as simpler is up to you: Let R be the set of
polynomials in x with terms axn where a is a real number and n = 2r + 3s for some nonnegative
integers r, s — so the exponents can be any element of N ∪ {0} except 1. (In the terms of the last
example, this R is the semigroup ring of the “numerical semigroup generated by 2 and 3”.) Now
let I be the set of elements of R with zero coefficients in the x0 (i.e., constant) and x2 terms, and
let J be the set of elements of R with zero coefficients in the x0, x2, and x5 terms. The product of
any two elements of I has lowest exponent at least 6, so it is in J ; so J captures multiplication in
I and hence is an ideal there. But J is not an ideal in R, because x3 ∈ J and x2 ∈ R but x5 /∈ J .


