Math 320 — Exam I

Make sure your reasoning is clear, in most cases in English sentences, with symbols used only for abbreviation and then used correctly. (Possible total points 75.)

- 1. (16 points) Which of the following are groups? For each of those that are not groups, cite a property of groups that it doesn't have.
 - (a) $(\mathbb{Z}^+, +)$
 - (b) $(\mathcal{P}(X), \cap)$, where X is a nonempty set
 - (c) $(GL(2, \mathbb{R}), *)$, where $A * B = AB^{-1}$
 - (d) $(\mathbb{Q} \{0\}, \text{multiplication})$
- 2. (10 points) (a) Draw the subgroup lattice of Z₅₀ (under ⊕). (In Section 5 we proved that, because this group is cyclic, all its subgroups are cyclic, and you may use that fact here.)
 (b) Where in your diagram do (12) and (13) lie?
- 3. (14 points) Let S be a set with an associative operation *.
 - (a) Prove that, if elements e, f of S satisfy e * x = x and x * f = x for every x in S (i.e., e is a "left identity" and f is a "right identity"), then e = f.
 - (b) Show that, under matrix multiplication, the set

$$S = \left\{ \left(\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right) : a, b \in \mathbb{R} \right\}$$

has infinitely many left identities but no right identity. (You do not need to show that S is closed under multiplication.)

- 4. (15 points) Let x be an element of a group for which o(x) = n, and let r, s be factors (i.e., divisors) of n. Prove that $\langle x^r \rangle \subseteq \langle x^s \rangle$ if and only if s divides r. (Warning: $x^r = (x^s)^d$ does not imply r = sd.)
- 5. (20 points) Let f, g be elements of a group, neither equal to the identity e, for which o(g) = 2and o(f) = 4 and gfg^{-1} is a power of f but not equal to f itself.
 - (a) What power f^k of f must gfg^{-1} be (out of the possible powers e, f^2, f^3)? (Note this gives $gf = f^k g$. This fact is used below.)
 - (b) We can rewrite any gf^n (for n a positive integer) in the form $f^m g$. Use (a) to express m in terms of n.
 - (c) We can list the products of f and g as

$$e, f, f^2, f^3, g, fg, f^2g, f^3g$$
.

Find the orders of the last three of these.

(d) The 8 elements in (c) form a group D. The groups \mathbb{Z}_8 and Q_8 also have 8 elements. Does either of these groups "look just like" D? (As usual, if your answer is "no", give a reason why not, i.e., give a property that one has and the other doesn't. For example, \mathbb{Z}_8 and Q_8 don't "look just like" each other because \mathbb{Z}_8 is cyclic and Q_8 is not.)

Solutions to Exam I

- 1. (a) No identity: 0 isn't in the set.
 - (b) No inverses (except that the identity, X, is its own inverse).
 - (c) Not associative: $(A * B) * C = AB^{-1}C^{-1}$ but $A * (B * C) = A(BC^{-1})^{-1} = ACB^{-1}$
 - and it would rarely be the case that $B^{-1}C^{-1} = CB^{-1}$.
 - (d) A group.
- 2. (a)

- (b) $\langle 12 \rangle = \langle 2 \rangle$, because gcd(12, 50) = 2, and $\langle 13 \rangle = \mathbb{Z}_{50}$ because gcd(13, 50) = 1.
- 3. (a) Because e is a left identity, e * f = f; and because f is a right identity, e * f = e. Thus, f = e * f = e.
 - (b) In order to get

$$\left(\begin{array}{cc}c&d\\0&0\end{array}\right)\left(\begin{array}{cc}a&b\\0&0\end{array}\right)=\left(\begin{array}{cc}a&b\\0&0\end{array}\right)$$

we must have ca = a and cb = b, so we must have c = 1. But there is no condition on d; so all matrices $\begin{pmatrix} 1 & d \\ 0 & 0 \end{pmatrix}$, for any d in \mathbb{R} , are left identities. If there were a right identity, by (a) it would have to equal all the left identities; but they are not equal to each other; so there is no right identity.

- 4. Suppose s divides r, say r = sd where $d \in \mathbb{Z}$; then $x^r = (x^s)^d$, so every integral power of x^r is also an integral power of x^s , i.e., $\langle x^r \rangle \subseteq \langle x^s \rangle$. Conversely, suppose $\langle x^r \rangle \subseteq \langle x^s \rangle$. Then $x^r = (x^s)^d$ for some $d \in \mathbb{Z}$. Thus $x^{r-sd} = e$, so r-sd = nk for some k in \mathbb{Z} . Because s divides both terms on the left side of r = nk + sd, it also divides the right side, r, and the proof is complete.
- 5. (a) By one of the homework problems, the conjugate gfg⁻¹ of f has the same order as f. The distinct powers of f are e, f, f², f³, but e, f² have smaller order, and we are told gfg⁻¹ ≠ f, so we must have gfg⁻¹ = f³. (And hence gf = f³g.)
 (b) gfⁿ = f³gfⁿ⁻¹ = f⁶gfⁿ⁻² = ··· = f³ⁿg, so m = 3n (or we can replace 3n with its

remainder on division by 4, the order of f). (c) [I didn't expect you to verify that these three elements are distinct from the ones that

came before and from each other; but I will put an argument here for completeness: None of the three is a power of f, because if we had, say, $f^kg = f^\ell$, then $g = f^{\ell-k}$, which is impossible because g does not commute with f. And if $f^kg = f^\ell g$, then $f^{k-\ell} = e$, so $k \equiv \ell \mod 4$. Now

to the part I $\underline{\text{did}}$ expect you to do:] We have

$$(fg)^2 = fgfg = ff^3gg = e$$
, $(f^2g)^2 = f^2gf^2g = f^2f^6gg = e$
and $(f^3g)^2 = f^3gf^3g = f^3f^9gg = e$,

so fg, f^2g, f^3g all have order 2. (d) D is not abelian (because $fg \neq gf$), so it does not "look just like" \mathbb{Z}_8 . It has 5 elements of order 2, so it does not "look just like" Q_8 , which has only 1 such, -I.