Math 320 - Exam I

Make sure your reasoning is clear, in most cases in English sentences, with symbols used only for abbreviation and then used correctly. (Possible total points 75.)

1. (16 points) Which of the following are groups? For each of those that are not groups, cite a property of groups that it doesn't have.
(a) $\left(\mathbb{Z}^{+},+\right)$
(b) $(\mathcal{P}(X), \cap)$, where X is a nonempty set
(c) $(G L(2, \mathbb{R}), *)$, where $A * B=A B^{-1}$
(d) $(\mathbb{Q}-\{0\}$,multiplication)
2. (10 points) (a) Draw the subgroup lattice of \mathbb{Z}_{50} (under \oplus). (In Section 5 we proved that, because this group is cyclic, all its subgroups are cyclic, and you may use that fact here.)
(b) Where in your diagram do $\langle 12\rangle$ and $\langle 13\rangle$ lie?
3. (14 points) Let S be a set with an associative operation $*$.
(a) Prove that, if elements e, f of S satisfy $e * x=x$ and $x * f=x$ for every x in S (i.e., e is a "left identity" and f is a "right identity"), then $e=f$.
(b) Show that, under matrix multiplication, the set

$$
S=\left\{\left(\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right): a, b \in \mathbb{R}\right\}
$$

has infinitely many left identities but no right identity. (You do not need to show that S is closed under multiplication.)
4. (15 points) Let x be an element of a group for which $o(x)=n$, and let r, s be factors (i.e., divisors) of n. Prove that $\left\langle x^{r}\right\rangle \subseteq\left\langle x^{s}\right\rangle$ if and only if s divides r. (Warning: $x^{r}=\left(x^{s}\right)^{d}$ does not imply $r=s d$.)
5. (20 points) Let f, g be elements of a group, neither equal to the identity e, for which $o(g)=2$ and $o(f)=4$ and $g f g^{-1}$ is a power of f but not equal to f itself.
(a) What power f^{k} of f must $g f g^{-1}$ be (out of the possible powers e, f^{2}, f^{3})? (Note this gives $g f=f^{k} g$. This fact is used below.)
(b) We can rewrite any $g f^{n}$ (for n a positive integer) in the form $f^{m} g$. Use (a) to express m in terms of n.
(c) We can list the products of f and g as

$$
e, f, f^{2}, f^{3}, g, f g, f^{2} g, f^{3} g
$$

Find the orders of the last three of these.
(d) The 8 elements in (c) form a group D. The groups \mathbb{Z}_{8} and Q_{8} also have 8 elements. Does either of these groups "look just like" D ? (As usual, if your answer is "no", give a reason why not, i.e., give a property that one has and the other doesn't. For example, \mathbb{Z}_{8} and Q_{8} don't "look just like" each other because \mathbb{Z}_{8} is cyclic and Q_{8} is not.)

Solutions to Exam I

1. (a) No identity: 0 isn't in the set.
(b) No inverses (except that the identity, X, is its own inverse).
(c) Not associative: $(A * B) * C=A B^{-1} C^{-1}$ but $A *(B * C)=A\left(B C^{-1}\right)^{-1}=A C B^{-1}-$ and it would rarely be the case that $B^{-1} C^{-1}=C B^{-1}$.
(d) A group.
2. (a)

(b) $\langle 12\rangle=\langle 2\rangle$, because $\operatorname{gcd}(12,50)=2$, and $\langle 13\rangle=\mathbb{Z}_{50}$ because $\operatorname{gcd}(13,50)=1$.
3. (a) Because e is a left identity, $e * f=f$; and because f is a right identity, $e * f=e$. Thus, $f=e * f=e$.
(b) In order to get

$$
\left(\begin{array}{cc}
c & d \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)
$$

we must have $c a=a$ and $c b=b$, so we must have $c=1$. But there is no condition on d; so all matrices $\left(\begin{array}{ll}1 & d \\ 0 & 0\end{array}\right)$, for any d in \mathbb{R}, are left identities. If there were a right identity, by (a) it would have to equal all the left identities; but they are not equal to each other; so there is no right identity.
4. Suppose s divides r, say $r=s d$ where $d \in \mathbb{Z}$; then $x^{r}=\left(x^{s}\right)^{d}$, so every integral power of x^{r} is also an integral power of x^{s}, i.e., $\left\langle x^{r}\right\rangle \subseteq\left\langle x^{s}\right\rangle$. Conversely, suppose $\left\langle x^{r}\right\rangle \subseteq\left\langle x^{s}\right\rangle$. Then $x^{r}=\left(x^{s}\right)^{d}$ for some $d \in \mathbb{Z}$. Thus $x^{r-s d}=e$, so $r-s d=n k$ for some k in \mathbb{Z}. Because s divides both terms on the left side of $r=n k+s d$, it also divides the right side, r, and the proof is complete.
5. (a) By one of the homework problems, the conjugate $g f g^{-1}$ of f has the same order as f. The distinct powers of f are e, f, f^{2}, f^{3}, but e, f^{2} have smaller order, and we are told $g f g^{-1} \neq f$, so we must have $g f g^{-1}=f^{3}$. (And hence $g f=f^{3} g$.)
(b) $g f^{n}=f^{3} g f^{n-1}=f^{6} g f^{n-2}=\cdots=f^{3 n} g$, so $m=3 n$ (or we can replace $3 n$ with its remainder on division by 4 , the order of f).
(c) [I didn't expect you to verify that these three elements are distinct from the ones that came before and from each other; but I will put an argument here for completeness: None of the three is a power of f, because if we had, say, $f^{k} g=f^{\ell}$, then $g=f^{\ell-k}$, which is impossible because g does not commute with f. And if $f^{k} g=f^{\ell} g$, then $f^{k-\ell}=e$, so $k \equiv \ell \bmod 4$. Now
to the part I did expect you to do:] We have

$$
\begin{gathered}
(f g)^{2}=f g f g=f f^{3} g g=e, \quad\left(f^{2} g\right)^{2}=f^{2} g f^{2} g=f^{2} f^{6} g g=e \\
\text { and } \quad\left(f^{3} g\right)^{2}=f^{3} g f^{3} g=f^{3} f^{9} g g=e,
\end{gathered}
$$

so $f g, f^{2} g, f^{3} g$ all have order 2 .
(d) D is not abelian (because $f g \neq g f$), so it does not "look just like" \mathbb{Z}_{8}. It has 5 elements of order 2 , so it does not "look just like" Q_{8}, which has only 1 such, $-I$.

