Math 320 — Exam I

Make sure your reasoning is clear, in most cases in English sentences, with symbols used only for abbreviation and then used correctly.

- 1. The Fibonacci sequence f_1, f_2, f_3, \ldots is defined by setting $f_1 = 1$, $f_2 = 1$, and for $n \ge 3$, $f_n = f_{n-1} + f_{n-2}$ (so $f_3 = 2$, $f_4 = 3$, $f_5 = 5$, etc.). Prove that, for every positive integer n, the sum of the squares of the first n terms in the Fibonacci sequence, $\sum_{j=1}^n f_j^2$, equals $f_n f_{n+1}$.
- 2. Which of the following are groups? For those which are not, tell why not.
 - (a) (\mathbb{Z}^+ , exponentiation)
 - (b) $(\mathbb{R} \{0\}, \text{multiplication})$
 - (c) $(\mathbb{Z}^+, +)$
 - (d) $(GL(2, \mathbb{R}), \text{addition of matrices})$
- 3. Let S be a set with an associative operation * and an identity e.
 - (a) Prove that an element of S has at most one inverse.
 - (b) Prove that if a, b in S have inverses, then a * b also has an inverse.

			m	n	0	p	q	r
		\overline{m}	m	n	0	p	q	r
		n	n	p	q	m	r	0
4.	The operation table to the right defines a group.	0	0	r	m	q	p	m
	(a) Is this group abelian? Prove your answer.	p	p	m	r	n	0	q
	(b) Is this group cyclic? Prove your answer.	q	q	0	n	r	m	p
		r	r	q	p	0	n	m

5. (a) In each of the following groups, list the elements of the cyclic group generated by the given element:

(i) (\mathbb{R}^+, \cdot) , 5 (ii) $(\mathbb{Z}_{10}, +)$, 6 (iii) $(\mathcal{P}(\{1, 2, 3\}), \triangle)$, $\{1, 2\}$

(b) Give the order of 4, regarded as an element of each of the following groups:

((i) (Z_{10}, \oplus) (ii) (\mathbb{Q}^+, \cdot) (iii) $(\mathbb{Z}_{15}, \oplus)$

- 6. The "least common multiple" lcm(a, b) of two nonzero integers a, b is the smallest positive integer which is divisible (evenly) by both a and b. Let x, y be elements of an abelian group, and m = lcm(o(x), o(y)).
 - (a) Prove that o(xy) divides m.
 - (b) Prove that, if $\langle x \rangle \cap \langle y \rangle = \{e\}$, then o(xy) = m. (Hint: If $(xy)^n = e$, then $x^n = y^{-n}$.)
- 7. Let x, g be elements of a group, with o(x) = 10. Why is it impossible that $gxg^{-1} = x^5$?

Solutions to Exam I

1. For n = 1: $\sum_{j=1}^{1} 1^2 = 1(1)$. Assume that for a particular $n, \sum_{j=1}^{n} f_j^2 = f_n f_{n+1}$. Then

$$\sum_{j=1}^{n+1} f_j^2 = \sum_{j=1}^n f_j^2 + f_{n+1}^2 = f_n f_{n+1} + f_{n+1}^2 = f_{n+1}(f_n + f_{n+1}) = f_{n+1} f_{n+2} .$$

It follows that the desired equation holds for all positive integers n.

- 2. (a) Not a group: Exponentiation is not associative.
 - (b) A group.
 - (c) Not a group: There is no additive identity in \mathbb{Z}^+ .
 - (d) Not a group: The sum of two invertible matrices may not be invertible, so addition of matrices is not an operation on $GL(2, \mathbb{R})$.
- 3. (a) Suppose x in S has inverses y and z; then y = ye = y(xz) = (yx)z = ez = z, so the "two" inverses are the same element.

(b) $(a * b) * (b^{-1} * a^{-1}) = a * (b * b^{-1}) * a^{-1}) = a * e * a^{-1} = a * a^{-1} = e$, and similarly $(b^{-1} * a^{-1}) * (a * b) = e$, so $b^{-1} * a^{-1}$ is an inverse for a * b.

- 4. (a) No: on = r but no = q.
 (b) No: Cyclic groups are abelian, and we have just seen that this group is not abelian.
- 5. (a) (i) $\{\ldots, \frac{1}{25}, \frac{1}{5}, 1, 5, 25, 125, \ldots\}$, (ii) $\{6, 2, 8, 4, 0\}$, (iii) $\{\{1, 2\}, \emptyset\}$ (b) (i) 5, (ii) ∞ , (iii) 15
- 6. (a) Because the group is abelian, (xy)^m = x^my^m, and because m is a multiple of both o(x) and o(y), both x^m and y^m are e, so (xy)^m = ee = e, so the order of xy divides m.
 (b) Suppose (xy)ⁿ = e; then as noted in the hint, xⁿ = y⁻ⁿ, so this element, in both ⟨x⟩ and ⟨y⟩, is e: xⁿ = e and yⁿ = e. Thus, n is a common multiple of both o(x) and o(y), and so it is greater than or equal to lcm(o(x), o(y)) = m. So m is the smallest power of xy that is e, i.e., o(xy) = m.
- 7. The conjugates of x all have the same order as x itself, i.e., 10, but x^5 has order 2, so it cannot be a conjugate of x.