Math 320 - Exam I

Make sure your reasoning is clear, in most cases in English sentences, with symbols used only for abbreviation and then used correctly.

1. The Fibonacci sequence $f_{1}, f_{2}, f_{3}, \ldots$ is defined by setting $f_{1}=1, f_{2}=1$, and for $n \geq 3$, $f_{n}=f_{n-1}+f_{n-2}$ (so $f_{3}=2, f_{4}=3, f_{5}=5$, etc.). Prove that, for every positive integer n, the sum of the squares of the first n terms in the Fibonacci sequence, $\sum_{j=1}^{n} f_{j}^{2}$, equals $f_{n} f_{n+1}$.
2. Which of the following are groups? For those which are not, tell why not.
(a) $\left(\mathbb{Z}^{+}\right.$, exponentiation $)$
(b) $(\mathbb{R}-\{0\}$, multiplication $)$
(c) $\left(\mathbb{Z}^{+},+\right)$
(d) $(G L(2, \mathbb{R})$,addition of matrices)
3. Let S be a set with an associative operation $*$ and an identity e.
(a) Prove that an element of S has at most one inverse.
(b) Prove that if a, b in S have inverses, then $a * b$ also has an inverse.
4. The operation table to the right defines a group.
(a) Is this group abelian? Prove your answer.
(b) Is this group cyclic? Prove your answer.

	m	n	o	p	q	r
m	m	n	o	p	q	r
n	n	p	q	m	r	o
o	o	r	m	q	p	m
p	p	m	r	n	o	q
q	q	o	n	r	m	p
r	r	q	p	o	n	m

5. (a) In each of the following groups, list the elements of the cyclic group generated by the given element:
(i) $\left(\mathbb{R}^{+}, \cdot\right), 5$
(ii) $\left(\mathbb{Z}_{10},+\right), 6$
(iii) $(\mathcal{P}(\{1,2,3\}), \triangle),\{1,2\}$
(b) Give the order of 4 , regarded as an element of each of the following groups:
((i) $\left(Z_{10}, \oplus\right)$
(ii) $\left(\mathbb{Q}^{+}, \cdot\right)$
(iii) $\left(\mathbb{Z}_{15}, \oplus\right)$
6. The "least common multiple" $\operatorname{lcm}(a, b)$ of two nonzero integers a, b is the smallest positive integer which is divisible (evenly) by both a and b. Let x, y be elements of an abelian group, and $m=\operatorname{lcm}(o(x), o(y))$.
(a) Prove that $o(x y)$ divides m.
(b) Prove that, if $\langle x\rangle \cap\langle y\rangle=\{e\}$, then $o(x y)=m$. (Hint: If $(x y)^{n}=e$, then $x^{n}=y^{-n}$.)
7. Let x, g be elements of a group, with $o(x)=10$. Why is it impossible that $g x g^{-1}=x^{5}$?

Solutions to Exam I

1. For $n=1: \sum_{j=1}^{1} 1^{2}=1(1)$. Assume that for a particular $n, \sum_{j=1}^{n} f_{j}^{2}=f_{n} f_{n+1}$. Then

$$
\sum_{j=1}^{n+1} f_{j}^{2}=\sum_{j=1}^{n} f_{j}^{2}+f_{n+1}^{2}=f_{n} f_{n+1}+f_{n+1}^{2}=f_{n+1}\left(f_{n}+f_{n+1}\right)=f_{n+1} f_{n+2} .
$$

It follows that the desired equation holds for all positive integers n.
2. (a) Not a group: Exponentiation is not associative.
(b) A group.
(c) Not a group: There is no additive identity in \mathbb{Z}^{+}.
(d) Not a group: The sum of two invertible matrices may not be invertible, so addition of matrices is not an operation on $G L(2, \mathbb{R})$.
3. (a) Suppose x in S has inverses y and z; then $y=y e=y(x z)=(y x) z=e z=z$, so the "two" inverses are the same element.
(b) $\left.(a * b) *\left(b^{-1} * a^{-1}\right)=a *\left(b * b^{-1}\right) * a^{-1}\right)=a * e * a^{-1}==a * a^{-1}=e$, and similarly $\left(b^{-1} * a^{-1}\right) *(a * b)=e$, so $b^{-1} * a^{-1}$ is an inverse for $a * b$.
4. (a) No: on $=r$ but $n o=q$.
(b) No: Cyclic groups are abelian, and we have just seen that this group is not abelian.
5. (a) (i) $\left\{\ldots, \frac{1}{25}, \frac{1}{5}, 1,5,25,125, \ldots\right\}$,
(ii) $\{6,2,8,4,0\}$,
(iii) $\{\{1,2\}, \emptyset\}$
(b) (i) $5, \quad$ (ii) ∞, \quad (iii) 15
6. (a) Because the group is abelian, $(x y)^{m}=x^{m} y^{m}$, and because m is a multiple of both $o(x)$ and $o(y)$, both x^{m} and y^{m} are e, so $(x y)^{m}=e e=e$, so the order of $x y$ divides m.
(b) Suppose $(x y)^{n}=e$; then as noted in the hint, $x^{n}=y^{-n}$, so this element, in both $\langle x\rangle$ and $\langle y\rangle$, is $e: x^{n}=e$ and $y^{n}=e$. Thus, n is a common multiple of both $o(x)$ and $o(y)$, and so it is greater than or equal to $\operatorname{lcm}(o(x), o(y))=m$. So m is the smallest power of $x y$ that is e, i.e., $o(x y)=m$.
7. The conjugates of x all have the same order as x itself, i.e., 10 , but x^{5} has order 2 , so it cannot be a conjugate of x.

