Math 320 — Exam II

Make sure your reasoning is clear, in most cases in English sentences with symbols used only for abbreviation and then used correctly.

- 1. Which of the following subsets are subgroups? For each which is not, give one reason why not.
 - (a) $\{0\}$ in \mathbb{Z} (b) \mathbb{Z}_5 in \mathbb{Z} (c) $\{e, g, fg\}$ in D_4 (d) \mathbb{R}^+ in \mathbb{R}
- 2. Prove that $SL(n, \mathbb{R})$, the set of $n \times n$ matrices with real entries and determinant 1, is a subgroup of $GL(n, \mathbb{R})$. You may use the fact from linear algebra that $\det(AB) = (\det A)(\det B)$.
- 3. Let $G = \langle x \rangle$ be a cyclic group of order pq where p, q are distinct primes. Draw the subgroup lattice of G.
- 4. Find groups of order 16 which are: (a) cyclic (b) abelian but not cyclic (c) nonabelian
- 5. Let $f: S \to T$ be a function. A "leftinverse" for f is a function $g: T \to S$ for which $g \circ f$ is the identity function on S.
 - (a) Prove that if f has a left inverse, then f is 1-1.
 - (b) Let $S = \{a, b\}, T = \{x, y, z\}$, and $f = \{(a, x)(b, y)\}$. Find two left inverses g_1, g_2 for f.
 - (c) Define (by analogy) what is meant by a "right inverse" h for f.
 - (d) Prove that if f has a right inverse, then f is onto T.
- 6. Recall that D_n , the dihedral group of the *n*-gon, and A_n , the alternating group of degree *n*, are subgroups of S_n , the symmetric group of degree *n*.
 - (a) For which n is the element f of D_n also in A_n ?
 - (b) For which n is the element g of D_n also in A_n ? (Give your answer in terms of the remainder of n on division by 4.)
 - (c) If f, g are in A_n , what is $D_n \cap A_n$?
- 7. On the group \mathbb{Z}_{10} , define relations as follows: For a, b in \mathbb{Z}_{10} , aR_1b iff $a \oplus b = 0$ and aR_2b iff $\langle a \rangle = \langle b \rangle$.
 - (a) Which of R_1 and R_2 are equivalence relations? (Both, maybe.)
 - (b) For each that is an equivalence relation, find the equivalence classes in \mathbb{Z}_{10} .
 - (c) For each that is not an equivalence relation, give examples from \mathbb{Z}_{10} for each defining property of equivalence relation that fails.

Solutions to Exam II

- 1. (a) A subgroup. (b) Not a subgroup: \mathbb{Z}_5 is a group, but its operation (addition mod 5) is different from the usual operation of addition on \mathbb{Z} . (c) Not a subgroup: Not closed under the operation, because $g(fg) = (gf)g = f^3gg = f^3$. (d) No additive identity or inverses.
- 2. The identity matrix I has determinant 1, so it is in $SL(n, \mathbb{R})$. If $A, B \in SL(n, \mathbb{R})$, i.e., $\det(A) = \det(B) = 1$, then $\det(AB) = \det(A) \det(B) = 1(1) = 1$, so $AB \in SL(n, \mathbb{R})$. If $A \in SL(n, \mathbb{R})$, then $\det(A^{-1}) = \det(A) \det(A^{-1}) = \det(AA^{-1}) = \det(I) = 1$, so $A^{-1} \in SL(n, \mathbb{R})$. Therefore, $SL(n, \mathbb{R})$ is a subgroup of $GL(n, \mathbb{R})$.
- 3.

- 4. Here are some possible answers: (a) \mathbb{Z}_{16} (b) $\mathbb{Z}_4 \times \mathbb{Z}_4$ (c) $D_4 \times \mathbb{Z}_2$.
- 5. (a) As the problem says, denote a left inverse of f by g. Now assume s_1, s_2 are elements of S for which $f(s_1) = f(s_2)$. Then $s_1 = i(s_1) = (g \circ f)(s_1) = g(f(s_1)) = g(f(s_2)) = (g \circ f)(s_2) = i(s_2) = s_2$.
 - (b) $g_1 = \{(x, a), (y, b), (z, a)\}, g_2 = \{(x, a), (y, b), (z, b)\}$
 - (c) A right inverse of f is a function $h: T \to S$ for which $f \circ h$ is the identity function on T.
 - (d) Let t be an element of T. Then $t = i(t) = (f \circ h)(t) = f(h(t))$, so t is in the image of f.
- 6. (a) f is an *n*-cycle, which we know is the composition of n-1 transpositions. So f is in A_n if n-1 is even, i.e., if n is odd.

(b) If n is even, then g is the composition of (n-2)/2 transpositions, so g is even if (n-2)/2 is even, i.e., the remainder on division by 4 is 2; and g is odd if that remainder is 0. If n is odd, then g is the composition of (n-1)/2 transpositions; so g is even if (n-1)/2 is even, i.e., the remainder on division of n by 4 is 1, and odd if the remainder is 3. So g is in A_n if the remainder when n is divided by 4 is 1 or 2, and not in A_n if the remainder is 0 or 3. (c) Because all elements of D_n are products of f and g, if they are in A_n , then $D_n \subseteq A_n$, so

- (c) because an elements of D_n are products of f and g, if they are in A_n , then $D_n \subseteq A_n$, so $D_n \cap A_n = D_n$.
- (a) R₁ is not an equivalence relation, but R₂ is one.
 (b) For R₂, the equivalence classes are {0}, {1, 3, 7, 9}, {2, 4, 6, 8}, {5}.
 (c) R₁ isn't reflexive: 1⊕1 = 2 ≠ 0. It isn't transitive: 1⊕9 = 0 and 9⊕1 = 0, but 1⊕1 ≠ 0. But it is symmetric, because ⊕ is commutative.