Math 320 - Exam II

Make sure your reasoning is clear, in most cases in English sentences with symbols used only for abbreviation and then used correctly.

1. Which of the following subsets are subgroups? For each which is not, give one reason why not.
(a) $\{0\}$ in \mathbb{Z}
(b) \mathbb{Z}_{5} in \mathbb{Z}
(c) $\{e, g, f g\}$ in D_{4}
(d) \mathbb{R}^{+}in \mathbb{R}
2. Prove that $S L(n, \mathbb{R})$, the set of $n \times n$ matrices with real entries and determinant 1 , is a subgroup of $G L(n, \mathbb{R})$. You may use the fact from linear algebra that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.
3. Let $G=\langle x\rangle$ be a cyclic group of order $p q$ where p, q are distinct primes. Draw the subgroup lattice of G.
4. Find groups of order 16 which are:
(a) cyclic
(b) abelian but not cyclic
(c) nonabelian
5. Let $f: S \rightarrow T$ be a function. A "leftinverse" for f is a function $g: T \rightarrow S$ for which $g \circ f$ is the identity function on S.
(a) Prove that if f has a left inverse, then f is 1-1.
(b) Let $S=\{a, b\}, T=\{x, y, z\}$, and $f=\{(a, x)(b, y)\}$. Find two left inverses g_{1}, g_{2} for f.
(c) Define (by analogy) what is meant by a "right inverse" h for f.
(d) Prove that if f has a right inverse, then f is onto T.
6. Recall that D_{n}, the dihedral group of the n-gon, and A_{n}, the alternating group of degree n, are subgroups of S_{n}, the symmetric group of degree n.
(a) For which n is the element f of D_{n} also in A_{n} ?
(b) For which n is the element g of D_{n} also in A_{n} ? (Give your answer in terms of the remainder of n on division by 4.)
(c) If f, g are in A_{n}, what is $D_{n} \cap A_{n}$?
7. On the group \mathbb{Z}_{10}, define relations as follows: For a, b in $\mathbb{Z}_{10}, a R_{1} b$ iff $a \oplus b=0$ and $a R_{2} b$ iff $\langle a\rangle=\langle b\rangle$.
(a) Which of R_{1} and R_{2} are equivalence relations? (Both, maybe.)
(b) For each that is an equivalence relation, find the equivalence classes in \mathbb{Z}_{10}.
(c) For each that is not an equivalence relation, give examples from \mathbb{Z}_{10} for each defining property of equivalence relation that fails.

Solutions to Exam II

1. (a) A subgroup. (b) Not a subgoup: \mathbb{Z}_{5} is a group, but its operation (addition $\bmod 5$) is different from the usual operation of addition on \mathbb{Z}. (c) Not a subgroup: Not closed under the operation, because $g(f g)=(g f) g=f^{3} g g=f^{3}$. (d) No additive identity or inverses.
2. The identity matrix I has determinant 1 , so it is in $S L(n, \mathbb{R})$. If $A, B \in S L(n, \mathbb{R})$, i.e., $\operatorname{det}(A)=\operatorname{det}(B)=1$, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1(1)=1$, so $A B \in S L(n, \mathbb{R})$. If $A \in$ $S L(n, \mathbb{R})$, then $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(I)=1$, so $A^{-1} \in S L(n, \mathbb{R})$. Therefore, $S L(n, \mathbb{R})$ is a subgroup of $G L(n, \mathbb{R})$.
3.

4. Here are some possible answers: (a) $\mathbb{Z}_{16} \quad$ (b) $\mathbb{Z}_{4} \times \mathbb{Z}_{4} \quad$ (c) $D_{4} \times \mathbb{Z}_{2}$.
5. (a) As the problem says, denote a left inverse of f by g. Now assume s_{1}, s_{2} are elements of S for which $f\left(s_{1}\right)=f\left(s_{2}\right)$. Then $s_{1}=i\left(s_{1}\right)=(g \circ f)\left(s_{1}\right)=g\left(f\left(s_{1}\right)\right)=g\left(f\left(s_{2}\right)\right)=(g \circ f)\left(s_{2}\right)=$ $i\left(s_{2}\right)=s_{2}$.
(b) $g_{1}=\{(x, a),(y, b),(z, a)\}, g_{2}=\{(x, a),(y, b),(z, b)\}$
(c) A right inverse of f is a function $h: T \rightarrow S$ for which $f \circ h$ is the identity function on T.
(d) Let t be an element of T. Then $t=i(t)=(f \circ h)(t)=f(h(t))$, so t is in the image of f.
6. (a) f is an n-cycle, which we know is the composition of $n-1$ transpositions. So f is in A_{n} if $n-1$ is even, i.e., if n is odd.
(b) If n is even, then g is the composition of $(n-2) / 2$ transpositions, so g is even if $(n-2) / 2$ is even, i.e., the remainder on division by 4 is 2 ; and g is odd if that remainder is 0 . If n is odd, then g is the composition of $(n-1) / 2$ transpositions; so g is even if $(n-1) / 2$ is even, i.e., the remainder on division of n by 4 is 1 , and odd if the remainder is 3 . So g is in A_{n} if the remainder when n is divided by 4 is 1 or 2 , and not in A_{n} if the remainder is 0 or 3 .
(c) Because all elements of D_{n} are products of f and g, if they are in A_{n}, then $D_{n} \subseteq A_{n}$, so $D_{n} \cap A_{n}=D_{n}$.
7. (a) R_{1} is not an equivalence relation, but R_{2} is one.
(b) For R_{2}, the equivalence classes are $\{0\},\{1,3,7,9\},\{2,4,6,8\},\{5\}$.
(c) R_{1} isn't reflexive: $1 \oplus 1=2 \neq 0$. It isn't transitive: $1 \oplus 9=0$ and $9 \oplus 1=0$, but $1 \oplus 1 \neq 0$. But it is symmetric, because \oplus is commutative.

