4/30/81

Math 320 — Exam III

Make sure your reasoning is clear, in most cases in English sentences with symbols used only for abbreviation and then used correctly. Proofs need not be long.

- 1. In a group G of 34 elements, what are the possible orders of subgroups of G? What are the possible orders of elements of G? Is there a single group of 34 elements which has elements of all possible orders?
- 2. Give reasons why three of the following subgroups are normal in the corresponding groups. And show that the fourth is not normal.

(a) $\langle 5 \rangle$ in \mathbb{Z}_{30} (b) $\langle f \rangle$ in D_5 (c) $\langle (1,2) \rangle$ in S_3 (d) $SL(3,\mathbb{R})$ in $GL(3,\mathbb{R})$

- 3. Let $\varphi: G \to H$ be an epimorphism of groups and N be a normal subgroup of G. Prove that $\varphi(N)$ is normal in H.
- 4. Sketch a proof for each of the following (i.e., define functions and state what must be checked).
 - (a) $(\mathbb{R} \{0\})/\{\pm 1\} \cong \mathbb{R}^+$
 - (b) $\mathbb{Z}/\langle 4 \rangle$ is isomorphic to a subgroup of $\mathbb{C} \{0\}$. (Hint: Send 1 to *i*.)
- 5. Consider the group D_{17} (which is too large to test all cases of anything).
 - (a) What are $Z(f^k)$ (for any k = 1, ..., 16) and Z(g)? (See Problem 1. HInt: Since $g \in Z(g)$, 2 divides |Z(g)|.)
 - (b) How many conjugates does f have? How many does g have?
 - (c) What are the conjugates of f?
 - (d) Write the class equation of D_{17} in its number form, not its set form.

Solutions to Exam III

- 1. Possible orders of subgroups, the divisors of 34, i.e. 1, 2, 17 and 34. Possible orders of elements, the same. The cyclic group \mathbb{Z}_{34} has exactly one subgroup of each possible order (and that is the only one, up to isomorphism, because no other 34-element group has an element of order 34).
- 2. (a) \mathbb{Z}_{30} is abelian, so all its subgroups are normal.
 - (b) $[D_5 : \langle f \rangle] = 2.$
 - (c) Not normal: $(1, 2, 3, 4, 5)(1, 2)(1, 2, 3, 4, 5)^{-1} = (1, 3, 4, 5)(1, 5, 4, 3, 2) = (2, 3) \notin \langle (1, 2) \rangle$.
 - (d) $SL(3, \mathbb{R})$ is the kernel of the determinant, which is a group homomorphism $GL(3, \mathbb{R}) \to \mathbb{R} \{0\}$.
- 3. I don't read the question as requiring that we show $\varphi(N)$ is a subgroup, but just in case, let's throw that in: Because $e_G \in N$, we have $\varphi(e_G) \in \varphi(N)$, so $\varphi(N) \neq \emptyset$. If $x, y \in \varphi(N)$, then $x = \varphi(a)$ and $y \in \varphi(b)$ for some $a, b \in N$, and $ab \in N$, so $xy = \varphi(a)\varphi(b) = \varphi(ab) \in \varphi(N)$; and $a^{-1} \in N$, so $x^{-1} = \varphi(a)^{-1} = \varphi(a^{-1}) \in \varphi(N)$. Thus, $\varphi(N)$ is a subgroup. To show normality, take $x \in \varphi(N)$ and $z \in H$. Then $x = \varphi(a)$ for some a in N, as before, and $z = \varphi(c)$ for some c in G because φ is onto H. Now $cac^{-1} \in N$ because $N \triangleleft G$, so $zxz^{-1} = \varphi(c)\varphi(a)\varphi(c)^{-1} = \varphi(cac^{-1}) \in \varphi(N)$. Therefore, $\varphi(N) \triangleleft H$.
- 4. (a) Define $|\cdot| : \mathbb{R} \{0\} \to \mathbb{R}^+$ by $r \mapsto |r|$. Then $|\cdot|$ is a epimorphism of multiplicative groups, and the kernel is $\{1, -1\}$, so by the Fundamental Theorem of Group Homomorphisms, $(\mathbb{R} - \{0\})/\{\pm 1\} \cong \mathbb{R}^+$.
 - (b) Define $\varphi : \mathbb{Z} \to \mathbb{C} \{0\} : n \mapsto i^n$. Then φ is a group homomorphism with kernel $\langle 4 \rangle$, because i^4 is the smallest positive power of *i* that equals 1; and its image is $\langle i \rangle$, so by the Fundamental Theorem of Group Homomorphisms, $\mathbb{Z}/\langle 4 \rangle \cong \langle i \rangle$, which is a subgroup of $\mathbb{C} \{0\}$.
- 5. (a) Because $f^{-k}g = gf^k$, and $f^{-k} \neq f^k$ for any k = 1, ..., 16 because 17 is odd, we see that $g \notin Z(f^k)$, so $Z(f^k)$ is not all of D_{17} . But all the powers of f commute with each other, so $\langle f \rangle \subseteq Z(f^k)$. Because $\langle f \rangle$ is a subgroup of D_{17} of index 2, a prime, there are no subgroups properly between it and D_{17} , so $\langle f \rangle = Z(f^k)$. Similarly, Z(g) contains at least $\langle g \rangle$, which has index 17, another prime, and Z(g) is a proper subgroup of D_{17} , so $Z(g) = \langle g \rangle$.
 - (b) f has $[D_{17}: Z(f)] = [D_{17}: \langle f \rangle] = 34/17 = 2$ conjugates, and g has $[D_{17}: Z(g)] = [D_{17}: \langle g \rangle] = 34/2 = 17$ conjugates.
 - (c) f is one of its own conjugates, and the other one must be the result of conjugating by one of the elements in the other left coset $g\langle f \rangle$ of its centralizer: $gfg^{-1} = f^{-1}gg = f^{16}$.
 - (d) The 16 powers of f (other than e) are conjugate in inverse pairs, and g has 17 conjugates; so a set of representatives of the conjugacy classes with more than one element is $\{f, f^2, \ldots, f^8, g\}$, and the class equation is

$$|D_{17}| = |Z(D_{17})| + 8[D_{17} : \langle f \rangle] + [D_{17} : \langle g \rangle]$$

34 = 1 + 8(2) + 17