Math 320 - Final Exam

Clear explanations, preferably in English sentences, increase chances for partial credit.

1. (a) Let S be a set with an associative operation $*$, and let x be an element of S. Prove by induction that, for any positive integer n, x^{n} commutes with x. (You may use, as the definition of x^{n}, the product $x * \cdots * x$, with n factors, if $n>1$, or x if $n=1$.)
(b) Prove that this fails if $*$ is not associative. (Hint: Try $S=\mathbb{Z}, *=$ subtraction.)
2. Give the cyclic subgroups generated by each of the following elements, and the orders of these elements.
(a) i in $\mathbb{C}-\{0\}$
(b) 3 in \mathbb{Z}
(c) $(3,1)$ in $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$
(d) $\{1\}$ in $\mathcal{P}(\{1,2\})$
3. (a) What are the possible orders of subgroups of D_{5} ?
(b) Draw the lattice of subgroups of D_{5}.
(c) Which subgroups of D_{5} are normal? Which are not? Prove your answers for $\langle f\rangle$ and $\langle g\rangle$.
4. Let G be a subgroup of S_{n}. On the set $\{1,2, \ldots, n\}$, define the relation R on G by $x R y$ iff there is an element g of G such that $g(x)=y$.
(a) Prove that R is an equivalence relation.
(b) Pick a particular x in $\{l, 2, \ldots, n\}$, and let $G_{x}=\{g \in G: g(x)=x\}$. Prove that G_{x} is a subgroup of G.
(c) Prove that, for g_{1}, g_{2} in $G, g_{1}(x)=g_{2}(x)$ iff $g_{1} G_{x}=g_{2} G_{x}$.
(d) Conclude from (c) that the number of images of x under elements of G is a factor of $|G|$.
5. (a) Prove that there is no epimorphism from \mathbb{Z}_{10} onto \mathbb{Z}_{4}.
(b) Prove that there is no epimorphism from \mathbb{Z}_{12} onto V.
6. In the ring \mathbb{Z}_{12} find: (a) a zerodivisor other than 0 ; (b) a nilpotent other than 0 ; (c) an idempotent other than 0 and 1 ; and (d) a unit other than 1.
7. Let $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a, b, c \in \mathbb{R}\right\}$, a subring of $M_{2}(\mathbb{R})$, and $I=\left\{\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right): b, d \in \mathbb{R}\right\}$. Prove that I is an ideal in R, and $R / I \cong \mathbb{R}$ as rings. (Hint: Consider the function $\varphi: R \rightarrow$ $\left.\mathbb{R}:\left(\begin{array}{cc}a & b \\ 0 & d\end{array}\right) \mapsto a.\right)$

Solutions to Final Exam

1. (a) For $n=1$, there is nothing to prove: $x * x=x * x$. Assume that $x^{n} * x=x * x^{n}$. Then $x^{n+1} * x=\left(x^{n} * x\right) * x=\left(x * x^{n}\right) * x=x *\left(x^{n} * x\right)=x *\left(x^{n+1}\right)$. Therefore, $x^{n} * x=x * x^{n}$ for all positive integers n.
(b) $(1-1)-1=-1$, but $1-(1-1)=1$, i.e., 1 does not commute with $1-1$.
2. (a) 4 , because $i^{4}=1$.
(b) ∞.
(c) Because 3 has order 2 in \mathbb{Z}_{6} and 1 has order 4 in $\mathbb{Z}_{4},(3,1)$ has order $\operatorname{gcd}(2,4)=4$.
(d) All elements in a power set are their own inverses, so they all have order 2 except the identity, \emptyset.
3. (a) The factors of $\left|D_{5}\right|=10: 1,2,5,10$.
(b)

(c) $\{e\}, D_{5}$ and $\{f\}$ are normal; the two-element subgroups $\{g\},\{f g\},\left\{f^{2} g\right\},\left\{f^{3} g\right\}$ and $\left\{f^{4} g\right\}$ are not normal. $\{f\}$ is normal because it is of index 2 in D_{5}. And $\{g\}$ is not normal because $f g f^{-1}=g f^{4} f^{4}=g f^{3} \notin\{g\}$.
4. Reflexive: Because the identity function i is in $G, i(x)=x$ for every x in $\{1,2, \ldots, n\}$, so $x R x$. Symmetric: If $x R y$, then there is a function g in G for which $g(x)=y$; but then $x=g^{-1}(y)$, and $g^{-1} \in G$, so $y R x$. Transitive: If $x R y$ and $y R z$, then there are functions g, h in G for which $g(x)=y$ and $h(y)=z$; and then $(h \circ g)(x)=h(g(x))=h(y)=z$, and $h \circ g \in G$, so x Rz.
(b) Clearly the identity function is in any G_{x}. Suppose $g, h \in G_{x}$, i.e., $g(x)=x$ and $h(x)=x$; then $(g \circ h)(x)=g(h(x))=g(x)=x$, so $g \circ h \in G_{x}$. Suppose $g \in G_{x}$, i.e., $g(x)=x$; then $x=g^{-1}(x)$, so $g^{-1} \in G_{x}$.
(c) $g_{1}(x)=g_{2}(x)$ iff $g_{2}^{-1}\left(g_{1}(x)\right)=x$, iff $\left(g_{2}^{-1} \circ g_{1}\right)(x)=x$, iff $g_{2}^{-1} \circ g_{1} \in G_{x}$, iff $g_{1} G_{x}=g_{2} G_{x}$.
(d) Because each image of x under an element of G corresponds to a left coset of G_{x}, according to (c), the number of images of x under elements of G is the number of left cosets of G_{x} in G, which is $\left[G: G_{x}\right]=|G| /\left|G_{x}\right|$, a factor of $|G|$.
5. (a) If there were an epimorphism φ from \mathbb{Z}_{10} onto \mathbb{Z}_{4}, then $\mathbb{Z}_{4} \cong \mathbb{Z}_{10} / \operatorname{Ker}(\varphi)$, so $4=\left|\mathbb{Z}_{4}\right|=$ $\left[\mathbb{Z}_{10}: \operatorname{Ker}(\varphi)\right]$, which is a factor of $\left|\mathbb{Z}_{10}\right|=10$; but 4 is not a factor of 10 .
(b) If there were an epimorphism φ from $\mathbb{Z}_{1} 2$ onto V, then $\operatorname{Ker}(\varphi)$ must have $\left|\mathbb{Z}_{12}\right| /|V|=$
$12 / 4=3$ elements, so $\operatorname{Ker}(\varphi)=\langle 4\rangle$. But in $\mathbb{Z}_{12} /\langle 4\rangle,\langle 4\rangle \oplus 1$ has order 4 , while no element of V has order 4 , so V is not isomorphic to $\mathbb{Z}_{12} /\langle 4\rangle$. So there is no φ.
6. (a) 3 , because $3 \odot 4=0$; (b) 6 , because $6 \odot 6=0$; (c) 4 , because $4 \odot 4=4$; and (d) 11 , because $11 \odot 11=1$.
7. If the function φ described in the hint is a ring homomorphism, then I is clearly its kernel and \mathbb{R} is its image, so the desired results will follow. So let's check that it is a homomorphism:

$$
\begin{gathered}
\varphi\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
0 & h
\end{array}\right)\right)=\varphi\left(\left(\begin{array}{cc}
a+e & b+f \\
0 & d+h
\end{array}\right)\right)=a+e=\varphi\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\right)+\varphi\left(\left(\begin{array}{ll}
e & f \\
0 & h
\end{array}\right)\right) \\
\varphi\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
0 & h
\end{array}\right)\right)=\varphi\left(\left(\begin{array}{cc}
a e & a f+b h \\
0 & d h
\end{array}\right)\right)=a e=\varphi\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\right) \varphi\left(\left(\begin{array}{ll}
e & f \\
0 & h
\end{array}\right)\right)
\end{gathered}
$$

