Section 1: (Binary) Operations

It is assumed that you learned in Math 250 about sets and mathematical induction, the content
of Section 0, and we will begin with binary operations. Technically:

Def:

For a set S, any function S x S — S is a (binary) operation. (Such creatures as “unary

operations” exist, i.e., functions S — 5, as well as “ternary”, S x § x .S — 5, etc., but we are only
interested in the binary ones, so we will usually drop the “binary” part of the term.)

So we know many, many (binary) operations on R; for example, (a,b) + a® + sin(3b + 7). But
of course the term is intended to capture under a single word some familiar ideas that have some
things in common while still not being identical:

Addition, multiplication and subtraction of real numbers are all operations on R. (Division
is not, because division by 0 isn’t defined, so division is only a function R x (R — {0}) — R.)

Addition of n-vectors and cross-product of 3-vectors are operations on R™ and R3. (Dot
product is not, because it is a function R™ x R™ — R.)

Addition of matrices of the same dimensions, and multiplication of square matrices of the
same dimension are operations on M, x,(R) and M, x,(R) respectively.

“Pointwise” addition and multiplication of real-valued functions on some common set (e.g.,
an interval in the real line) is an operation on the set of such functions: The function f + ¢
is defined on the common domain by (f + g)(z) = f(x) + g(x) for every z in the domain.
We might talk about these in calculus I, discussing definite integrals: For integrable functions
f, g on the interval [a, b], ff(f +9)(z)dr = f; f(x)dx + ffg(x)d:n

For any positive integer n, two operations on the set Z, = {0,1,2,...,n—2,n—1} of possible
remainders on long division by n, called “integers modulo n” are addition and multiplication
modulo n: For a,b in Z,, a ®b and a ® b are the remainders when the integers a +b and a - b
are computed in the usual way in Z and then divided by n. (It is assumed that you learned
about Z, in Math 250.)

Compositions of functions from a set X to itself is an operation: If f, g are functions X — X,
then f o g is defined on X by (f o g)(x) = f(g(z)) for every = in X;

On a finite set, an operation can be displayed in a table — we can even say it is defined by
the table: On a set S = {a,b, ¢, d},

*‘a Z ¢ Z axa=a axb=b axc=c¢c axd=d
a|a ¢ bxa=d bxb=c bxc=0b bxd=oa
bld ¢ b a means

d d cxa=c cxb=c cxc=d cxd=d
cle ¢ d¥a=d dxb=d dxc=c¢c dxd=c
dild d ¢ c

In other words, the head of a given row is the first operand, the head of a column is the
second operand, and the entry at that point in the table (where row and column meet) is the
result.



e For a fixed set X, the family S = P(X) of all subsets of X have at least three natural
operations on it. (The script P is because S is called the “power set” of X.): For subsets
A, B of X,

AUB = {xeS:xz€ Aorxe€ B or both}
ANB {reS:ze Aand z € B}
AANB = {x€S:xz€ Aorxe B butnot both} = (AUB) - (AN B)

Yy

These are called “union,” “intersection,” and “symmetric difference,” respectively. So if
X = {4,7}, then P(X) = {0, {4}, {7}, X}, and

u |0 {4 {1} X nle {4 {1 X Ao {4 {1} X
0 0 {4} {7} 010 0 0 0 0 0 {4y {7} X
{4} {4} {4} X {440 {4+ 0 {4 {44 {44 0 Xx {7}

X
X
{{ X {7} X {73100 {7 {7} {Tp {1 X 0 {4}
XX X X X X |0 {4 {71} X X | X {7} {4 0

e ctc., etc.

If we really think of binary operations as functions, it is reasonable to use “Polish notation”
(named for mathematicians from Poland who first used it): denoting the sum of a and b by +(a, b).
Some older calculators use “reverse Polish notation,” essentially (a,b)+: punching “5-Enter-3-Plus”
to get the sum of 5 and 3. But of course most common is “infix” notation, putting the symbol for
the operation between the operands: the sum of a and b is denoted a + b. Sometimes, especially
if the operation is some kind of “multiplication”, we will simply denote it by juxtaposition: the
“product” of a and b is denoted ab. We will do this a lot in learning about groups, because each
group has only one operation, so it can’t be misunderstood.

Most operations are too badly behaved to have any good properties in common, though, so we
usually impose at least one or two conditions to restrict to those that act a little more like our most
familiar examples. The two usual conditions are

Def: An operation x on a set S is commutative iff, for every two elements a,b of S, a xb =bx*a
(i.e., the function x associates the ordered pairs (a,b) and (b, a) to the same element of S). And
is associative iff, for all elements a,b,c of S, (a*b) xc=ax* (bx*c).

We know addition and multiplication of real numbers, addition of vectors and addition of ma-
trices, pointwise addition and multiplication of functions all are both commutative and associative.
Addition and multiplication modulo n are commutative and associative on Z, — in both cases,
commutativity is easy because addition and multiplication in Z is commutative, and associativity
is a bit more complicated to check because long division by n must be done twice on both sides
of the equals sign. Multiplication of matrices is associative but not commutative. Composition of
functions is associative (more on this below), but it is not commutative: If f, g : R — R are given
by f(z) =x+ 1 and g(z) = 2z, then (fog)(x) =2z + 1 but (go f)(x) =2z +2,s0 fog#go f.

Because associativity is more complicated to define, and usually also to check, it’s a bit surprising
that it is more basic than commutativity; but it turns out that a non-commutative operation is



somewhat inconvenient, but a non-associative operation is a mess to work with. The usual example
of a non-associative operation is the cross-product of 3-vectors:

(ixi)xj=0xj=0 but ix(ixj)=ixk=-j.

But a simpler non-example is subtraction of real numbers: (3 —2) =1 =0but3—-(2-1) = 2.
That is why we usually think of subtraction, not as an operation in its own right, but as adding
the negative. (More on that later, too.)

Commutativity is very nice when it is available, but we know that matrix multiplication is not
commutative (though it is associative), so sometimes we make do without it. Unlike associativity,
though, at least commutativity is easy to check from an operation table, just by looking for sym-
metry about the main diagonal (upper left to lower right) — assuming that the column heads and
row heads are in the same order. For example, take two operations on the set S = {a, b, c}:

b
b
c
b

Of these, o is not commutative (a o ¢ = ¢ but coa = a), while * is commutative, by the symmetry
of the table (though * is not associative: (bxb)*xa=c*xa=abut bx (bxa) =bxb=rc.)

Associativity does hold “naturally” if the operation is itself, or is derived from, a function
composition, because function compositions are clearly associative: ((fog)oh)(z) = f(g(h(zx))) =
(fo(goh))(x) — on both ends h is applied to z, then g is applied to h(x), then f is applied to
g(h(x)), so the results are identical. As an example of what I mean by “derived from” a function
composition, consider matrix multiplication, which is related to applying linear transformations: We

can check that every linear transformation 7" : R? — R? is given by a rule of the form T(( ;j )) =

ax + by
cx + dy

(5 =(ata)=(0a)()=2(5) smmeen=(2])

In linear algebra, B was called the “matrix representation of 7” (with respect to the standard
basis). If A,C are the matrix representations of the linear transformations S,U : R? — R?, then

>, so T' is multiplication of each vector by a fixed matrix:

for every :; in R?,

Y

ame) (1) = wsemeny( L))
)



and because this works for every vector in R?, we get (AB)C = A(BC). So matrix multiplication is
associative because it reflects composition of linear transformations, which is “naturally” associative.

Def: If S is a set and * is an associative operation on S, then the pair (S, *) (or sometimes just S,
if there is a natural choice for x) is called a semigroup.



