Section 1: (Binary) Operations — Graphics

On a finite set, an operation can be defined by a table: On a set $S = \{a, b, c, d\},\$

*	a	b	c	d
a	a	b	С	d
b	d	С	b	a
c	С	С	d	d
d	d	d	С	С

means

$$a * a = a \quad a * b = b \quad a * c = c \quad a * d = d$$

$$b * a = d \quad b * b = c \quad b * c = b \quad b * d = a$$

$$c * a = c \quad c * b = c \quad c * c = d \quad c * d = d$$

$$d * a = d \quad d * b = d \quad d * c = c \quad d * d = c$$

For a fixed set X, and for A, B in $\mathcal{P}(X)$,

 $A \cup B = \{x \in S : x \in A \text{ or } x \in B \text{ or both}\}$ $A \cap B = \{x \in S : x \in A \text{ and } x \in B\}$ $A \triangle B = \{x \in S : x \in A \text{ or } x \in B \text{ but not both}\} = (A \cup B) - (A \cap B)$

Example: $X = \{4, 7\}$, so $\mathcal{P}(X) = \{\emptyset, \{4\}, \{7\}, X\}$:

\cup	Ø	$\{4\}$	$\{7\}$	X
Ø	Ø	{4}	$\{7\}$	X
$\{4\}$	{4}	<i>{</i> 4 <i>}</i>	X	X
$\{7\}$	{7}	X	$\{7\}$	X
X	X	X	X	X
\cap	Ø {	4}	{7}	X
Ø	Ø	Ø	Ø	Ø
$\{4\}$	Ø {	4}	Ø -	$\{4\}$
$\{7\}$	Ø	Ø	{7} ·	$\{7\}$
X	Ø {	4}	$\{7\}$	X
\triangle	Ø	<i>{</i> 4 <i>}</i>	$\{7\}$	X
Ø	Ø	{4}	{7}	X
{4}	$\{4\}$	Ø	X	$\{7\}$
$\{7\}$	$\{7\}$	X	Ø	$\{4\}$
X	X	$\{7\}$	$\{4\}$	Ø

Polish notation: +(a, b). reverse Polish notations: (a, b)+infix notation: a + bjuxtaposition: ab **Def:** An operation * on a set S is *commutative* iff, for every two elements a, b of S, a * b = b * a (i.e., the function * associates the ordered pairs (a, b) and (b, a) to the same element of S). And * is *associative* iff, for all elements a, b, c of S, (a * b) * c = a * (b * c).

Non-associative operations:

1. The cross-product of 3-vectors:

 $(\mathbf{i} \times \mathbf{i}) \times \mathbf{j} = \mathbf{0} \times \mathbf{j} = \mathbf{0}$ but $\mathbf{i} \times (\mathbf{i} \times \mathbf{j}) = \mathbf{i} \times \mathbf{k} = -\mathbf{j}$.

2. Subtraction of real numbers: (3-2) - 1 = 0 but 3 - (2-1) = 2.

Take two operations on the set $S = \{a, b, c\}$:

*	a	b	c		0	a	b	c
a	a	b	a	-	a	a	b	С
b	b	c	b		b	b	c	b
c	a	b	a		c	a	b	c

Of these, \circ is not commutative ($a \circ c = c$ but $c \circ a = a$), while * is commutative, by the symmetry of the table (though * is not associative: (b*b)*a = c*a = a but b * (b * a) = b * b = c.)

Associativity does hold "naturally" if the operation is itself, or is derived from, a function composition, because function compositions are clearly associative: $((f \circ g) \circ h)(x) = f(g(h(x))) = (f \circ (g \circ h))(x)$ — on both ends h is applied to x, then g is applied to h(x), then f is applied to g(h(x)), so the results are identical.

Example: Matrix multiplication and linear transformations: We can check that every linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ is given by a rule of the form $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$, so T is multiplication of each vector by a fixed matrix:

$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} ax+by\\ cx+dy \end{pmatrix} = \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = B\begin{pmatrix} x\\ y \end{pmatrix}, \text{ say, where } B = \begin{pmatrix} a&b\\ c&d \end{pmatrix}.$$

In linear algebra, B was called the "matrix representation of T" (with respect to the standard basis). If A, C are the matrix representations of the linear $\begin{pmatrix} a \\ c \end{pmatrix}$

transformations $S, U : \mathbb{R}^2 \to \mathbb{R}^2$, then for every $\begin{pmatrix} x \\ y \end{pmatrix}$ in \mathbb{R}^2 ,

$$\begin{aligned} ((AB)C)\begin{pmatrix} x\\ y \end{pmatrix} &= ((S \circ T) \circ U)(\begin{pmatrix} x\\ y \end{pmatrix}) \\ &= S(T(U(\begin{pmatrix} x\\ y \end{pmatrix}))) \\ &= (S \circ (T \circ U))(\begin{pmatrix} x\\ y \end{pmatrix}) \\ &= (A(BC))\begin{pmatrix} x\\ y \end{pmatrix}, \end{aligned}$$

and because this works for every vector in \mathbb{R}^2 , we get (AB)C = A(BC). So matrix multiplication is associative *because* it reflects composition of linear transformations, which is "naturally" associative.

Def: If S is a set and * is an associative operation on S, then the pair (S, *) (or sometimes just S, if there is a natural choice for *) is called a *semigroup*.