Section 1: (Binary) Operations - Graphics

On a finite set, an operation can be defined by a table: On a set $S=$ $\{a, b, c, d\}$,

$$
\begin{array}{c|llll}
* & a & b & c & d \\
\hline a & a & b & c & d \\
b & d & c & b & a \\
c & c & c & d & d \\
d & d & d & c & c
\end{array}
$$

means

$$
\begin{array}{rlll}
a * a=a & a * b=b & a * c=c & a * d=d \\
b * a=d & b * b=c & b * c=b & b * d=a \\
c * a=c & c * b=c & c * c=d & c * d=d \\
d * a=d & d * b=d & d * c=c & d * d=c
\end{array}
$$

For a fixed set X, and for A, B in $\mathcal{P}(X)$,

$$
\begin{aligned}
A \cup B & =\{x \in S: x \in A \text { or } x \in B \text { or both }\} \\
A \cap B & =\{x \in S: x \in A \text { and } x \in B\} \\
A \triangle B & =\{x \in S: x \in A \text { or } x \in B \text { but not both }\}=(A \cup B)-(A \cap B)
\end{aligned}
$$

Example: $X=\{4,7\}$, so $\mathcal{P}(X)=\{\emptyset,\{4\},\{7\}, X\}$:

\cup	\emptyset	$\{4\}$	$\{7\}$	X
\emptyset	\emptyset	$\{4\}$	$\{7\}$	X
$\{4\}$	$\{4\}$	$\{4\}$	X	X
$\{7\}$	$\{7\}$	X	$\{7\}$	X
X	X	X	X	X
\cap	\emptyset	$\{4\}$	$\{7\}$	X
\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
$\{4\}$	\emptyset	$\{4\}$	\emptyset	$\{4\}$
$\{7\}$	\emptyset	\emptyset	$\{7\}$	$\{7\}$
X	\emptyset	$\{4\}$	$\{7\}$	X
\triangle	\emptyset	$\{4\}$	$\{7\}$	X
\emptyset	\emptyset	$\{4\}$	$\{7\}$	X
$\{4\}$	$\{4\}$	\emptyset	X	$\{7\}$
$\{7\}$	$\{7\}$	X	\emptyset	$\{4\}$
X	X	$\{7\}$	$\{4\}$	\emptyset

Polish notation: $+(a, b)$. reverse Polish notations: $(a, b)+$ infix notation: $a+b$
juxtaposition: $a b$

Def: An operation $*$ on a set S is commutative iff, for every two elements a, b of $S, a * b=b * a$ (i.e., the function $*$ associates the ordered pairs (a, b) and (b, a) to the same element of $S)$. And $*$ is associative iff, for all elements a, b, c of $S,(a * b) * c=a *(b * c)$.

Non-associative operations:

1. The cross-product of 3-vectors:

$$
(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}=\mathbf{0} \times \mathbf{j}=\mathbf{0} \quad \text { but } \quad \mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=-\mathbf{j} .
$$

2. Subtraction of real numbers: $(3-2)-1=0$ but $3-(2-1)=2$.

Take two operations on the set $S=\{a, b, c\}$:

$$
\begin{array}{c|cccc|ccc}
* & a & b & c \\
\hline a & a & b & a \\
b & b & c & b \\
c & a & b & a & & \begin{array}{c}
\circ \\
a
\end{array} & a & b \\
b & c \\
c & a & b \\
\hline
\end{array}
$$

Of these, \circ is not commutative ($a \circ c=c$ but $c \circ a=a$), while $*$ is commutative, by the symmetry of the table (though $*$ is not associative: $(b * b) * a=c * a=a$ but $b *(b * a)=b * b=c$.)

Associativity does hold "naturally" if the operation is itself, or is derived from, a function composition, because function compositions are clearly associative: $((f \circ g) \circ h)(x)=f(g(h(x)))=(f \circ(g \circ h))(x)$ - on both ends h is applied to x, then g is applied to $h(x)$, then f is applied to $g(h(x))$, so the results are identical.

Example: Matrix multiplication and linear transformations: We can check that every linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by a rule of the form $T\left(\binom{x}{y}\right)=\binom{a x+b y}{c x+d y}$, so T is multiplication of each vector by a fixed matrix:
$\left.T\binom{x}{y}\right)=\binom{a x+b y}{c x+d y}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=B\binom{x}{y}$, say, where $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
In linear algebra, B was called the "matrix representation of T " (with respect to the standard basis). If A, C are the matrix representations of the linear transformations $S, U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, then for every $\binom{x}{y}$ in \mathbb{R}^{2},

$$
\begin{aligned}
((A B) C)\binom{x}{y} & =((S \circ T) \circ U)\left(\binom{x}{y}\right) \\
& =S\left(T\left(U\left(\binom{x}{y}\right)\right)\right) \\
& =(S \circ(T \circ U))\left(\binom{x}{y}\right) \\
& =(A(B C))\binom{x}{y}
\end{aligned}
$$

and because this works for every vector in \mathbb{R}^{2}, we get $(A B) C=A(B C)$. So matrix multiplication is associative because it reflects composition of linear transformations, which is "naturally" associative.

Def: If S is a set and $*$ is an associative operation on S, then the pair $(S, *)$ (or sometimes just S, if there is a natural choice for $*$) is called a semigroup.

