Section 1: (Binary) Operations — Graphics

On a finite set, an operation can be defined by a table: On a set $S = \{a, b, c, d\}$,

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

means

$a * a = a \quad a * b = b \quad a * c = c \quad a * d = d$

$b * a = d \quad b * b = c \quad b * c = b \quad b * d = a$

$c * a = c \quad c * b = c \quad c * c = d \quad c * d = d$

$d * a = d \quad d * b = d \quad d * c = c \quad d * d = c$
For a fixed set X, and for A, B in $\mathcal{P}(X)$,

\begin{align*}
A \cup B &= \{ x \in S : x \in A \text{ or } x \in B \text{ or both} \} \\
A \cap B &= \{ x \in S : x \in A \text{ and } x \in B \} \\
A \triangle B &= \{ x \in S : x \in A \text{ or } x \in B \text{ but not both} \} = (A \cup B) - (A \cap B)
\end{align*}

Example: $X = \{4, 7\}$, so $\mathcal{P}(X) = \{\emptyset, \{4\}, \{7\}, X\}$:

\begin{center}
\begin{tabular}{c|cccc}
& \emptyset & $\{4\}$ & $\{7\}$ & X \\
\hline
\emptyset & \emptyset & $\{4\}$ & $\{7\}$ & X \\
$\{4\}$ & $\{4\}$ & $\{4\}$ & X & X \\
$\{7\}$ & $\{7\}$ & X & $\{7\}$ & X \\
X & X & X & X & X
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{c|cccc}
& \emptyset & $\{4\}$ & $\{7\}$ & X \\
\hline
\emptyset & \emptyset & \emptyset & \emptyset & \emptyset \\
$\{4\}$ & \emptyset & $\{4\}$ & \emptyset & $\{4\}$ \\
$\{7\}$ & \emptyset & \emptyset & $\{7\}$ & $\{7\}$ \\
X & \emptyset & $\{4\}$ & $\{7\}$ & X
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{c|cccc}
& \emptyset & $\{4\}$ & $\{7\}$ & X \\
\hline
\emptyset & \emptyset & $\{4\}$ & $\{7\}$ & X \\
$\{4\}$ & $\{4\}$ & \emptyset & X & $\{7\}$ \\
$\{7\}$ & $\{7\}$ & X & \emptyset & $\{4\}$ \\
X & X & $\{7\}$ & $\{4\}$ & \emptyset
\end{tabular}
\end{center}
Polish notation: \(+ (a, b)\).
reverse Polish notations: \((a, b) +\)
infix notation: \(a + b\)
juxtaposition: \(ab\)
Def: An operation \ast on a set S is *commutative* iff, for every two elements a, b of S, $a \ast b = b \ast a$ (i.e., the function \ast associates the ordered pairs (a, b) and (b, a) to the same element of S). And \ast is *associative* iff, for all elements a, b, c of S, $(a \ast b) \ast c = a \ast (b \ast c)$.

Non-associative operations:
1. The cross-product of 3-vectors:

 \[
 (i \times i) \times j = 0 \times j = 0 \quad \text{but} \quad i \times (i \times j) = i \times k = -j.
 \]

2. Subtraction of real numbers: $(3 - 2) - 1 = 0$ but $3 - (2 - 1) = 2$.

Take two operations on the set $S = \{a, b, c\}$:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Of these, \circ is not commutative ($a \circ c = c$ but $c \circ a = a$), while \ast is commutative, by the symmetry of the table (though \ast is not associative: $(b \ast b) \ast a = c \ast a = a$ but $b \ast (b \ast a) = b \ast b = c$.)
Associativity does hold “naturally” if the operation is itself, or is derived from, a function composition, because function compositions are clearly associative:
\[((f \circ g) \circ h)(x) = f(g(h(x))) = (f \circ (g \circ h))(x) \] — on both ends \(h \) is applied to \(x \), then \(g \) is applied to \(h(x) \), then \(f \) is applied to \(g(h(x)) \), so the results are identical.

Example: Matrix multiplication and linear transformations: We can check that every linear transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is given by a rule of the form
\[T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}, \] so \(T \) is multiplication of each vector by a fixed matrix:
\[T\left(\begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = B \begin{pmatrix} x \\ y \end{pmatrix}, \] say, where \(B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \).

In linear algebra, \(B \) was called the “matrix representation of \(T \)” (with respect to the standard basis). If \(A, C \) are the matrix representations of the linear transformations \(S, U : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \), then for every \(\begin{pmatrix} x \\ y \end{pmatrix} \) in \(\mathbb{R}^2 \),
\[
((AB)C)\begin{pmatrix} x \\ y \end{pmatrix} = ((S \circ T) \circ U)\begin{pmatrix} x \\ y \end{pmatrix} = S(T(U(\begin{pmatrix} x \\ y \end{pmatrix})))) = (S \circ (T \circ U))(\begin{pmatrix} x \\ y \end{pmatrix}) = (A(BC))\begin{pmatrix} x \\ y \end{pmatrix},
\]

and because this works for every vector in \(\mathbb{R}^2 \), we get \((AB)C = A(BC) \). So matrix multiplication is associative because it reflects composition of linear transformations, which is “naturally” associative.
Def: If S is a set and $*$ is an associative operation on S, then the pair $(S,*)$ (or sometimes just S, if there is a natural choice for $*$) is called a *semigroup*.