Section 4: Powers of an Element; Cyclic Groups

For elements of a semigroup $(S, *)$, the definition of positive integer exponents is clear: For x in S and n in $\mathbb{Z}^{+}, x^{n}=x * x * \cdots * x$, where there are n "factors", i.e., $n x^{\prime} s$ "starred together" this n-fold "star" is meaningful because associativity says that, no matter how parentheses are put in to divide it into $n-12$-fold "stars", the result will always be the same. In particular, $x^{1}=x$. If the semigroup has a (two-sided) identity e, then you can probably guess what an exponent of 0 means: $x^{0}=e$. If S is really a group, i.e., every element also has an inverse, then we can make sense of negative exponents; in fact, there are technically two reasonable definitions for x^{-n} when $n \in \mathbb{Z}^{+}$: Is it the inverse of x^{n}, or the n-th power of $x^{-1}-$ is x^{-n} equal to $\left(x^{n}\right)^{-1}$ or is it $\left(x^{-1}\right)^{n}$?. Fortunately, these two results turn out to be equal [the text leaves this as an exercise for the student, and so will I].

Warnings: Fractional exponents are usually meaningless in the context of groups. Also, one of the familiar rules of exponents does not hold, unless the group is abelian: If we start with $(x * y)^{2}=x^{2} * y^{2}$ (for elements x, y of some group), i.e., $x * y * x * y=x * x * y * y$, then cancellation shows that $y * x=x * y$. So for a general, not-necessarily-abelian group we can only hope to prove the other two rules of exponents:

Prop: If $(G, *)$ is a group, them for all x in G and m, n in \mathbb{Z}, we have $x^{m} x^{n}=x^{m+n}$ and $\left(x^{m}\right)^{n}=x^{m n}=\left(x^{n}\right)^{m}$. If G is abelian, then for any x, y in G and n in \mathbb{Z}, we have $(x * y)^{n}=x^{n} * y^{n}$. Pf: For $x^{m} * x^{n}=x^{m+n}$, suppose first that m, n are both positive. Then $x^{m} * x^{n}=(x * x * \cdots * x) *$ $(x * x * \cdots * x)$ where the first set of parentheses has $m x$'s and the second has n of them, so the result is "starring together" a total of $m+n x$'s, i.e., x^{m+n}. Suppose one of them is 0 , say $m=0$; then the equation to be proved is $x^{0} * x^{n}=x 0+n$, but because $x^{0}=e$ and $0+n=n$ (no matter whether n is positive, 0 or negative), both sides are x^{n} and the result follows. The text does the case where both m, n are negative and where $m<0$ and $n>0$, so let's do the case where $m>0$ and $n<0$; so that $k=-n$ is a positive integer. Then $x^{m} * x^{n}=x^{m} * x^{-k}=x^{m} *\left(x^{-1}\right)^{k}$, the value of which depends or the relative values of k, m, telescoping the "stars" $x * x^{-1}$ in the middle of the product:
if $k<m$, then $x^{m} *\left(x^{-1}\right)^{k}=x^{m-k}=x^{m+n}$;
if $k=m$, then $x^{m} *\left(x^{-1}\right)^{k}=e=x^{0}=x^{m-k}=x^{m+n}$; and
if $k>m$, then $x^{m} *\left(x^{-1}\right)^{k}=\left(x^{-1}\right)^{k-m}=x^{-(k-m)}=x^{m+n}$. Thus, in all cases, $x^{m} * x^{n}=x^{m+n}$.

The proof that $\left(x^{m}\right)^{n}=x^{m n}$ is also an exercise for the student. (It is not necessary to break up in cases for m, only for n.) Because multiplication of integers is commutative, the equality $x^{m n}=\left(x^{n}\right)^{m}$ follows from the other one.

Finally, suppose G is abelian, $x, y \in G$ and $n \in \mathbb{Z}$. Suppose first that n is positive. Then $(x * y)^{n}=x * y * x * y * \cdots * x * y$ is a "star" of $n x$'s and $n y$'s, and with the commutative property we can rearrange to put all the x 's first and all the y 's last, so that it becomes $x^{n} * y^{n}$. If $n=0$, then $(x * y)^{n}=e$ and $x^{n} * y^{n}=e * e=e$, so they are equal. Finally, if n is negative, say $n=-k$, then $x^{k} * y^{k}=(x * y)^{k}$ so $e=x^{-k} *(x * y)^{k} * y^{-k}=x^{-k} * y^{-k} *(x * y)^{k}$, so $(x * y)^{-k}=x^{-k} * y^{-k}$, i.e., also in this case, $(x * y)^{n}=x^{n} * y^{n}$.//

Notation: From now on, a general operation will be denoted, not by $*$, but by juxtaposition, writing $x y$ instead of $x * y$. Occasionally, if the operation is commutative, we will denote it by + ; in this case the inverse of x is denoted by $-x$, and "powers" become multiples: $x+x+\cdots+x$ (with n terms) is denoted $n x$. So the rules of exponents become $(m+n) x=m x+n x, m(n x)=$
$(m n) x=n(m x)$, and because we are assuming commutativity, $n(x+y)=n x+n y$.

In our basic examples of operations, addition and multiplication in \mathbb{R}, most of the multiples $n x$ and powers x^{n} (except for the identities, 0 and 1 respectively) get larger and larger as the n gets larger and larger. The counterexample is powers of -1 , which alternate between 1 and -1 . But in other groups, the powers (multiples) of elements can cycle through any number of other elements before repeating. For example, in $\left(\mathbb{Z}_{5}, \oplus\right)$, the multiples of 1 are

$$
\begin{array}{r}
1 \\
1+1=2 \\
1+1+1=3 \\
1+1+1+1=4 \\
1+1+1+1+1=0 \\
1+1+1+1+1+1=1 \\
1+1+1+1+1+1+1=2 \\
\text { etc. }
\end{array}
$$

Similarly, the powers of i in $(\mathbb{C}-\{0\}, \cdot)$ are

$$
i, i^{2}=-1, i^{3}=-i, i^{4}=1, i^{5}=i, i^{6}=-1, \text { etc. }
$$

Terminology: Let S be a subset of a group G. We say that S is closed under the operation on G if, for all x, y in $S, x y$ is also in S, i.e., the restriction of the operation on G to S is an operation on S. And S is closed under inverses if, for all x in S, x^{-1} is also in S. If a nonempty subset S of G is closed under the operation and inverses, then S is a group in its own right, called a subgroup of G. We'll study more general subgroups later, but for this section we are interested in a specific kind of subgroup:

Def and Prop: Let x be an element of a group G. The set $\langle x\rangle$ of all powers of x is closed under the operation on G and under inverses, so it is a subgroup of G, called the cyclic subgroup generated by x.
(i) If there is no positive integer n for which $x^{n}=e$, then we say x has infinite order; in symbols, $o(x)=\infty$. In this case the function $\varphi: \mathbb{Z} \rightarrow G: n \mapsto x^{n}$ is a one-to-one function with range $\langle x\rangle$, and it shows that, as a group, $\langle x\rangle$ behaves just like \mathbb{Z}.
(ii) If there is a positive integer n for which $x^{n}=e$, then the smallest such n is called the order of x, denoted $o(x)$. In this case, for $o(x)=n$, the function $\psi: \mathbb{Z}_{n} \rightarrow G: k \mapsto x^{k}$ is a one-to-one function with range $\langle x\rangle$, and it shows that, as a group, $\langle x\rangle$ behaves just like \mathbb{Z}_{n}.

Pf of whatever isn't a definition in this statement: The subset $\langle x\rangle$ is closed under the operation because $x^{m} x^{n}=x^{m+n}$; it is closed under inverses because $\left(x^{n}\right)^{-1}=x^{-n}$. So it is a subgroup of G. In the case where there is no positive power of x that is equal to e, it is clear that φ has range $\langle x\rangle$. to see it is one-to-one, suppose $x^{m}=x^{n}$ where $m \geq n$; then $x^{m-n}=e$, so we must have $m-n=0$, i.e., $m=n$. In the case where $o(x)=n<\infty$, we want to show first that ψ has range all of $\langle x\rangle$, i.e., every power of x is equal to x^{r} for some r between 0 and $n-1$ (inclusive): Given the power x^{m}, longdivide m by $n: m=q n+r$ where $q, r \in \mathbb{Z}$ and $0 \leq r<n$; then $x^{m}=x^{q n+r}=\left(x^{n}\right)^{q} x^{r}=e^{q} x^{r}=x^{r}$.

And to see that ψ is one-to-one, suppose $x^{r}=x^{s}$ where $0 \leq r \leq s<n$; then $x^{s-r}=e$, but $0 \leq s-r<n$ and the choice of n means $s-r=0$, i.e., $r=s$. "Behaves just like" means that adding in \mathbb{Z} or \mathbb{Z}_{n} corresponds to multiplying in G : In the case of infinite order, we have $\varphi(n+m)=x^{n+m}=x^{n} x^{m}=\varphi(n) \varphi(m)$, so the operations in the groups $\langle x\rangle$ and \mathbb{Z} are essentially identical. And in the case of order n, let s, t be elements of \mathbb{Z}_{n} and long-divide the integer $s+t$ by $n: s+t=n q+r$. Then $s \oplus t=r$, and $\psi(s) \psi(t)=x^{s} x^{t}=x^{s+t}=x^{n} q+r=\left(x^{n}\right)^{q} x^{r}=x^{r}=\psi(s \oplus t)$. So the operations in the groups $\langle x\rangle$ and \mathbb{Z}_{n} are essentially identical.//

Here is a diagram of what "the operations are essentially identical" means in the infinite-order case:

If we start with any pair of integers in the upper left, going across and then going down gives the same result as going down (side-by-side) and then going across.

Ex: In the group $G L(3, \mathbb{R})$, let

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Then

$$
A^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad A^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I
$$

so $\langle A\rangle=\left\{A, A^{2}, I\right\}$ behaves just like \mathbb{Z}_{3} :

$$
\quad A
$$

If $x^{n}=e$, then $\left(x^{-1}\right)^{n}=\left(x^{n}\right)^{-1}=e^{-1}=e$, and vice versa, so $o(x)$, the smallest n for which $x^{n}=e$, is the same as $o\left(x^{-1}\right)$, and if one is infinite, so is the other. We can say more when we are talking about finite orders, but the proofs suddenly involve a lot of Math 250 results. Before we give the proof, let's take an example, looking at the orders of the elements of \mathbb{Z}_{12} :

- 0 has order 1 - the identity in any group is the only element of order 1.
- 1 has order 12: we need to add 12 copies of 1 to get 0 .
- 2 has order $6: 2(2)=4,3(2)=6,4(2)=8,5(2)=10,6(2)=0$.
- The idea that works for 2 also works for the other divisors of $12: 3$ has order 4,4 has order 3,6 has order 2 .
- How many copies of 5 will we need to add to get 0 ? I.e., in \mathbb{Z}, how many 5 's will we need to add to get a multiple of 12 ? Well, because 5 has no factor in common with 12 , we only get $n(5)=m(12)$ if n is divisible by 12 ; so 5 has order 12 . The same is true of the other numbers less than 12 and relatively prime to it: 7 and 11 .
- $1(8)=8,2(8)=4,3(8)=0$; i.e., in \mathbb{Z}, a multiple of $8, n(8)$, is a multiple of 12 only if n makes up the factor 3 of 12 that is not in 8 . In the equation $n(8)=m(12)$, divide both sides by the gcd of 12 and 8 : $n(2)=m(3)$; because 3 is relatively prime to 2 , it must divide n. So $o(8)=3=12 / 4=12 / \operatorname{gcd}(12,8)$.
- And the same idea works for 9 and 10 : In $\mathbb{Z}, 1(9)=9,2(9)=18,3(9)=27,4(9)=36$, a multiple of 12: $o(9)=4=12 / 3=12 / \operatorname{gcd}(12,9)$; and $6(10)=60$ is the smallest common multiple of 10 and 12: $o(10)=6=12 / 2=12 / \operatorname{gcd}(12,10)$.

So the idea seems to be that, in \mathbb{Z}_{n}, the order of an element k is $n / \operatorname{gcd}(n, k)$. If this is right, it should translate to any cyclic group $\langle x\rangle$ where $o(x)=n$.

We need two things from Math 250, i.e., from arithmetic in \mathbb{Z} : the idea of long division, and the fact that, if a divides a product $b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$. The text proves these in great detail, but because they are now done in Math 250, I will assume we know them.

Prop: Suppose the group element x has finite order n. Then:
(i) For any integer $m, x^{m}=e$ if and only if $n \mid m$; and
(ii) For any integer $k, o\left(x^{k}\right)=n / \operatorname{gcd}(n, k)$.

Pf: (i) Of course if $n \mid m$, say $m=n d$, then $x^{m}=\left(x^{n}\right)^{d}=e^{d}=e$. Conversely, suppose $x^{m}=e$, and long-divide m by n : $m=q n+r$ where $q, r \in \mathbb{Z}$ with $0 \leq r<n$. Then we have $e=x^{m}=x^{q n+r}=$ $\left(x^{n}\right)^{q} x^{r}=e^{q} x^{r}=x^{r}$. But n was the smallest positive power of x that is e, so r, which is less than n, cannot be positive, i.e., it must be 0 . Thus, n divides $m=q n$.
(ii) Because $\operatorname{gcd}(n, k)$ is a factor of $k, k / \operatorname{gcd}(n, k)$ is an integer, so $\left(x^{k}\right)^{n / \operatorname{gcd}(n, k)}=\left(x^{n}\right)^{k / \operatorname{gcd}(n, k)}=$ $e^{k / \operatorname{gcd}(n, k)}=e$. So suppose there is an integer m for which $\left(x^{k}\right)^{m}=e$; in view of (i), it is enough to show that $n / \operatorname{gcd}(n, k)$ divides m : We know that $x^{k m}=e$, so $n \mid k m$, say $k m=n s$ where $s \in \mathbb{Z}$. Dividing both sides by $\operatorname{gcd}(n, k)$ gives $(k / \operatorname{gcd}(n, k)) m=(n / \operatorname{gcd}(n, k)) s$. But $k / \operatorname{gcd}(n, k)$ and $n / \operatorname{gcd}(n, k)$ have no factors in common - we have divided out all the common factors - so they are relatively prime; so the fact that $n / \operatorname{gcd}(n, k)$ divides the product $(k / \operatorname{gcd}(n, k)) m$ but is relatively prime to the first factor means that it must divide the second factor. Thus, $n / \operatorname{gcd}(n, k)$ divides m, as required.//

Def: If a group G includes an element x for which all the elements of G are powers of x, i.e., $\langle x\rangle=G$, then G is called a cyclic group, and x is called a generator of G.

If $o(x)=\infty$, we still call $\langle x\rangle$ a cyclic group, even though nothing is "cycling". For any group G, the cardinality $|G|$ is called the order. If $G=\langle x\rangle$ is cyclic, then $|G|=o(x)$.

Because the powers of an element all commute with each other, a cyclic group is abelian. But there are abelian groups that are not cyclic: The text gives the examples of $(\mathbb{Q},+)$ (assume x is a generator; then $x / 2$ is in \mathbb{Q}, but it is not an integral multiple - power - of x, a contradiction) and the "Klein Four-Group" $V=\{e, a, b, c\}$ with the operation [inspired by \mathbb{Z}_{2}^{2} under addition modulo 2]

	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(0,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(1,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(0,1)$
$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

Every element is its own inverse, so no element has order 4.

