Section 4: Powers of an Element; Cyclic Groups

For elements of a semigroup (5, %), the definition of positive integer exponents is clear: For x
in Sandnin Z", 2™ = x x x * - - - * x, where there are n “factors”, i.e., n ’s “starred together” —
this n-fold “star” is meaningful because associativity says that, no matter how parentheses are put
in to divide it into n — 1 2-fold “stars”, the result will always be the same. In particular, 2! = x.
If the semigroup has a (two-sided) identity e, then you can probably guess what an exponent of
0 means: 20 = e. If S is really a group, i.e., every element also has an inverse, then we can
make sense of negative exponents; in fact, there are technically two reasonable definitions for ="
when n € Z*: Is it the inverse of 2", or the n-th power of 7! — is 27" equal to (z")~!
(x~1)"?. Fortunately, these two results turn out to be equal [the text leaves this as an exercise for
the student, and so will I].

Warnings: Fractional exponents are usually meaningless in the context of groups. Also, one
of the familiar rules of exponents does not hold, unless the group is abelian: If we start with
(xxy)? = 22 xy? (for elements z,y of some group), i.e., T*y* T *y = T *x *y *y, then cancellation
shows that y * x = x *xy. So for a general, not-necessarily-abelian group we can only hope to prove

the other two rules of exponents:

or is it

Prop: If (G,x) is a group, them for all x in G and m,n in Z, we have 2™z" = ™" and

(™) = 2™ = (z™)™. If G is abelian, then for any x,y in G and n in Z, we have (xxy)" = 2" xy".

Pf: For ™% x™ = ™% suppose first that m,n are both positive. Then 2™ * 2™ = (z*x *---*T) *
(z % x % --- x ) where the first set of parentheses has m z’s and the second has n of them, so the
result is “starring together” a total of m 4+ n ’s, i.e., z™*". Suppose one of them is 0, say m = 0;
then the equation to be proved is 2 * ™ = 20 + n, but because 2° = e and 0 +n = n (no matter
whether n is positive, 0 or negative), both sides are ™ and the result follows. The text does the
case where both m,n are negative and where m < 0 and n > 0, so let’s do the case where m > 0
and n < 0; so that k = —n is a positive integer. Then 2™ x 2™ = 2™ x 27 % = 2™ x (z~1)*, the value
of which depends or the relative values of k, m, telescoping the “stars” 2 ~! in the middle of the
product:

if k < m, then 2™ % (z~1)F = gm=F = gm+n,

if k =m, then 2™ * (z71)F =¢ =

if & > m, then 2™ % (z~1)F = (z= 1)k = g—(k=m) = gmtn,

Thus, in all cases, ™ x 2™ = x .

The proof that (z)™ = ™" is also an exercise for the student. (It is not necessary to break
up in cases for m, only for n.) Because multiplication of integers is commutative, the equality
™ = (™)™ follows from the other one.

Finally, suppose G is abelian, z,y € G and n € Z. Suppose first that n is positive. Then
(zxy)" =xzxyxx*y*---xxxyisa “star” of n x’s and n y’s, and with the commutative property
we can rearrange to put all the x’s first and all the y’s last, so that it becomes x™ *x y"™. If n = 0,
then (z xy)" = e and 2" * ¥y = e x e = ¢, so they are equal. Finally, if n is negative, say n = —k,
then 2¥ x y¥ = (zxy)f soe=aFx (zxy)fxy P =2 Fxy P« (xxy)¥ so (xxy)F=aFxyF
i.e., also in this case, (zxy)" =z" xy".//

Notation: From now on, a general operation will be denoted, not by *, but by juxtaposition,
writing xy instead of x x y. Occasionally, if the operation is commutative, we will denote it by +;
in this case the inverse of x is denoted by —z, and “powers” become multiples: * +x + --- + =
(with n terms) is denoted nx. So the rules of exponents become (m + n)x = mx + nz, m(nzx) =



(mn)z = n(max), and because we are assuming commutativity, n(z + y) = nx + ny.

In our basic examples of operations, addition and multiplication in R, most of the multiples nx
and powers z" (except for the identities, 0 and 1 respectively) get larger and larger as the n gets
larger and larger. The counterexample is powers of —1, which alternate between 1 and —1. But in
other groups, the powers (multiples) of elements can cycle through any number of other elements
before repeating. For example, in (Zs, ®), the multiples of 1 are

1
1+1=2
1+1+1=3

1+1+14+1=4
1+1+14+1+1=0
1+14+1414+1+1=1
1+1+14+1+1+14+1=2

etc.

Similarly, the powers of i in (C — {0}, -) are

i, i2=—1, 3 =—i, *=1, =1, i%=—1, etc.

Terminology: Let S be a subset of a group G. We say that S is closed under the operation on G
if, for all =,y in S, xy is also in S, i.e., the restriction of the operation on G to S is an operation
on S. And S is closed under inverses if, for all x in S, 27! is also in S. If a nonempty subset S of
G is closed under the operation and inverses, then S is a group in its own right, called a subgroup
of G. We'll study more general subgroups later, but for this section we are interested in a specific
kind of subgroup:

Def and Prop: Let x be an element of a group G. The set (x) of all powers of z is closed under
the operation on G and under inverses, so it is a subgroup of G, called the cyclic subgroup generated
by x.

(i) If there is no positive integer n for which 2™ = e, then we say x has infinite order; in symbols,
o(z) = oco. In this case the function ¢ : Z — G : n — 2™ is a one-to-one function with range
(x), and it shows that, as a group, (z) behaves just like Z.

(ii) If there is a positive integer n for which 2™ = e, then the smallest such n is called the order of
z, denoted o(z). In this case, for o(x) = n, the function v : Z,, — G : k + 2* is a one-to-one
function with range (x), and it shows that, as a group, (z) behaves just like Z,.

Pf of whatever isn’t a definition in this statement: The subset (x) is closed under the operation
because z™x™ = ™*"; it is closed under inverses because (z)~! = x7". So it is a subgroup of G.
In the case where there is no positive power of x that is equal to e, it is clear that ¢ has range (x).
to see it is one-to-one, suppose ™ = x™ where m > n; then £~ " = e, so we must have m —n = 0,
i.e., m = n. In the case where o(z) = n < co, we want to show first that ¢ has range all of (x), i.e.,
every power of z is equal to 2" for some r between 0 and n—1 (inclusive): Given the power ™, long-

divide m by n: m = gn+r where ¢,r € Z and 0 < r < n; then 2™ = g9t = (2")Iz" = el2" = 2".



And to see that 9 is one-to-one, suppose z" = z° where 0 < r < s < n; then 57" = ¢, but
0 < s —r < n and the choice of n means s —r = 0, i.e.,, r = s. “Behaves just like” means
that adding in Z or Z, corresponds to multiplying in G: In the case of infinite order, we have
o(n+m) =" = 2"z™ = p(n)p(m), so the operations in the groups (z) and Z are essentially
identical. And in the case of order n, let s,t be elements of Z,, and long-divide the integer s +t by
n: s+t =nqg+r. Then s®t =r, and ¥(s)(t) = 22! = 25 = 2"q+r = (2")%" = 2" = P(sDt).
So the operations in the groups (x) and Z,, are essentially identical.//

Here is a diagram of what “the operations are essentially identical” means in the infinite-order
case:

Z x 7 oz

Lo 1o lo
G x G = ¢

If we start with any pair of integers in the upper left, going across and then going down gives the
same result as going down (side-by-side) and then going across.

Ex: In the group GL(3,R), let

010
A=|0 0 1
1 00
Then
00 1 1 00
A2=100]|, A=1010]|=I
010 00 1
so (A) = {A, A%, I} behaves just like Zg:
©: 73— (A): 0—1, 1— A, 21— A2
|1 A A2
I |1 A A2
Al A A% T
A2 A2 T A

If 2™ = e, then (z71)" = (2")~! = e~! = ¢, and vice versa, so o(z), the smallest n for which
2" = e, is the same as o(z~!), and if one is infinite, so is the other. We can say more when we are
talking about finite orders, but the proofs suddenly involve a lot of Math 250 results. Before we
give the proof, let’s take an example, looking at the orders of the elements of Zs:

e 0 has order 1 — the identity in any group is the only element of order 1.

e 1 has order 12: we need to add 12 copies of 1 to get 0.

2 has order 6: 2(2) =4, 3(2) =6, 4(2) =8, 5(2) =10, 6(2) = 0.

e The idea that works for 2 also works for the other divisors of 12: 3 has order 4, 4 has order
3, 6 has order 2.

e How many copies of 5 will we need to add to get 07 I.e., in Z, how many 5’s will we need to
add to get a multiple of 127 Well, because 5 has no factor in common with 12, we only get
n(5) = m(12) if n is divisible by 12; so 5 has order 12. The same is true of the other numbers
less than 12 and relatively prime to it: 7 and 11.



e 1(8) =8, 2(8) =4, 3(8) = 0; i.e., in Z, a multiple of 8, n(8), is a multiple of 12 only if n
makes up the factor 3 of 12 that is not in 8. In the equation n(8) = m(12), divide both sides
by the ged of 12 and 8: n(2) = m(3); because 3 is relatively prime to 2, it must divide n. So
o(8) = 3 = 12/4 = 12/ ged(12, 8).

e And the same idea works for 9 and 10: In Z, 1(9) = 9, 2(9) = 18, 3(9) = 27, 4(9) = 36, a
multiple of 12: 0(9) = 4 = 12/3 = 12/gcd(12,9); and 6(10) = 60 is the smallest common
multiple of 10 and 12: 0(10) = 6 = 12/2 = 12/ ged(12, 10).

So the idea seems to be that, in Z,, the order of an element k is n/gced(n, k). If this is right, it
should translate to any cyclic group (x) where o(x) = n.

We need two things from Math 250, i.e., from arithmetic in Z: the idea of long division, and
the fact that, if a divides a product be and ged(a, b) = 1, then ae. The text proves these in great
detail, but because they are now done in Math 250, I will assume we know them.

Prop: Suppose the group element x has finite order n. Then:

(i) For any integer m, 2™ = e if and only if n|m; and

(ii) For any integer k, o(z*) = n/ged(n, k).
Pf: (i) Of course if n|m, say m = nd, then 2™ = (z")% = ¢? = e. Conversely, suppose ™ = e, and
long-divide m by n: m = gn + r where ¢, € Z with 0 < r < n. Then we have e = 2™ = z?"" =
(x™)9z" = elx” = 2". But n was the smallest positive power of x that is e, so r, which is less than
n, cannot be positive, i.e., it must be 0. Thus, n divides m = gn.

(ii) Because ged(n, k) is a factor of k, k/ ged(n, k) is an integer, so (2#)7/ ged(mk) — (gn)k/ged(n.k) —
ek/eed(nk) — ¢ So suppose there is an integer m for which (zF)™ = e; in view of (i), it is enough
to show that n/ged(n, k) divides m: We know that 2*™ = e, so n|km, say km = ns where s € Z.
Dividing both sides by gcd(n, k) gives (k/ged(n,k))m = (n/ged(n,k))s. But k/ged(n, k) and
n/ ged(n, k) have no factors in common — we have divided out all the common factors — so they
are relatively prime; so the fact that n/ged(n, k) divides the product (k/ged(n, k))m but is rel-
atively prime to the first factor means that it must divide the second factor. Thus, n/gcd(n, k)
divides m, as required.//

Def: If a group G includes an element = for which all the elements of G are powers of z, i.e.,
(x) = G, then G is called a cyclic group, and x is called a generator of G.

If o(xz) = oo, we still call (x) a cyclic group, even though nothing is “cycling”. For any group
G, the cardinality |G| is called the order. If G = (z) is cyclic, then |G| = o(x).

Because the powers of an element all commute with each other, a cyclic group is abelian. But
there are abelian groups that are not cyclic: The text gives the examples of (Q,+) (assume z is a
generator; then x/2 is in Q, but it is not an integral multiple — power — of z, a contradiction) and
the “Klein Four-Group” V = {e, a, b, c} with the operation [inspired by Z2 under addition modulo
2

e a b ¢ [ (0,0) (1,0) (0,1) (1,1)
eTe a b e 0.0 0.0 (L) 0D L)
ala e ¢ b [ (1,0) | (1,0) (0,0) (1,1) (0,1) ]
blb e a 1) ©01) (L) (0.0 (10)
cle b a e (1,1) | (1,1) (0,1) (1,0) (0,0)



Every element is its own inverse, so no element has order 4.



