
Section 4: Powers of an Element; Cyclic Groups

For elements of a semigroup (S, ∗), the definition of positive integer exponents is clear: For x
in S and n in Z+, xn = x ∗ x ∗ · · · ∗ x, where there are n “factors”, i.e., n x′s “starred together” —
this n-fold “star” is meaningful because associativity says that, no matter how parentheses are put
in to divide it into n − 1 2-fold “stars”, the result will always be the same. In particular, x1 = x.
If the semigroup has a (two-sided) identity e, then you can probably guess what an exponent of
0 means: x0 = e. If S is really a group, i.e., every element also has an inverse, then we can
make sense of negative exponents; in fact, there are technically two reasonable definitions for x−n

when n ∈ Z+: Is it the inverse of xn, or the n-th power of x−1 — is x−n equal to (xn)−1 or is it
(x−1)n?. Fortunately, these two results turn out to be equal [the text leaves this as an exercise for
the student, and so will I].

Warnings: Fractional exponents are usually meaningless in the context of groups. Also, one
of the familiar rules of exponents does not hold, unless the group is abelian: If we start with
(x ∗ y)2 = x2 ∗ y2 (for elements x, y of some group), i.e., x ∗ y ∗x ∗ y = x ∗x ∗ y ∗ y, then cancellation
shows that y ∗ x = x ∗ y. So for a general, not-necessarily-abelian group we can only hope to prove
the other two rules of exponents:

Prop: If (G, ∗) is a group, them for all x in G and m,n in Z, we have xmxn = xm+n and
(xm)n = xmn = (xn)m. If G is abelian, then for any x, y in G and n in Z, we have (x∗y)n = xn ∗yn.

Pf: For xm ∗xn = xm+n, suppose first that m,n are both positive. Then xm ∗xn = (x∗x∗ · · · ∗x)∗
(x ∗ x ∗ · · · ∗ x) where the first set of parentheses has m x’s and the second has n of them, so the
result is “starring together” a total of m+ n x’s, i.e., xm+n. Suppose one of them is 0, say m = 0;
then the equation to be proved is x0 ∗ xn = x0 + n, but because x0 = e and 0 + n = n (no matter
whether n is positive, 0 or negative), both sides are xn and the result follows. The text does the
case where both m,n are negative and where m < 0 and n > 0, so let’s do the case where m > 0
and n < 0; so that k = −n is a positive integer. Then xm ∗ xn = xm ∗ x−k = xm ∗ (x−1)k, the value
of which depends or the relative values of k,m, telescoping the “stars” x ∗ x−1 in the middle of the
product:

if k < m, then xm ∗ (x−1)k = xm−k = xm+n;
if k = m, then xm ∗ (x−1)k = e = x0 = xm−k = xm+n; and
if k > m, then xm ∗ (x−1)k = (x−1)k−m = x−(k−m) = xm+n.

Thus, in all cases, xm ∗ xn = xm+n.
The proof that (xm)n = xmn is also an exercise for the student. (It is not necessary to break

up in cases for m, only for n.) Because multiplication of integers is commutative, the equality
xmn = (xn)m follows from the other one.

Finally, suppose G is abelian, x, y ∈ G and n ∈ Z. Suppose first that n is positive. Then
(x ∗ y)n = x ∗ y ∗x ∗ y ∗ · · · ∗x ∗ y is a “star” of n x’s and n y’s, and with the commutative property
we can rearrange to put all the x’s first and all the y’s last, so that it becomes xn ∗ yn. If n = 0,
then (x ∗ y)n = e and xn ∗ yn = e ∗ e = e, so they are equal. Finally, if n is negative, say n = −k,
then xk ∗ yk = (x ∗ y)k so e = x−k ∗ (x ∗ y)k ∗ y−k = x−k ∗ y−k ∗ (x ∗ y)k, so (x ∗ y)−k = x−k ∗ y−k,
i.e., also in this case, (x ∗ y)n = xn ∗ yn.//

Notation: From now on, a general operation will be denoted, not by ∗, but by juxtaposition,
writing xy instead of x ∗ y. Occasionally, if the operation is commutative, we will denote it by +;
in this case the inverse of x is denoted by −x, and “powers” become multiples: x + x + · · · + x
(with n terms) is denoted nx. So the rules of exponents become (m + n)x = mx + nx, m(nx) =
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(mn)x = n(mx), and because we are assuming commutativity, n(x+ y) = nx+ ny.

In our basic examples of operations, addition and multiplication in R, most of the multiples nx
and powers xn (except for the identities, 0 and 1 respectively) get larger and larger as the n gets
larger and larger. The counterexample is powers of −1, which alternate between 1 and −1. But in
other groups, the powers (multiples) of elements can cycle through any number of other elements
before repeating. For example, in (Z5,⊕), the multiples of 1 are

1

1 + 1 = 2

1 + 1 + 1 = 3

1 + 1 + 1 + 1 = 4

1 + 1 + 1 + 1 + 1 = 0

1 + 1 + 1 + 1 + 1 + 1 = 1

1 + 1 + 1 + 1 + 1 + 1 + 1 = 2

etc.

Similarly, the powers of i in (C− {0}, ·) are

i, i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, etc.

Terminology: Let S be a subset of a group G. We say that S is closed under the operation on G
if, for all x, y in S, xy is also in S, i.e., the restriction of the operation on G to S is an operation
on S. And S is closed under inverses if, for all x in S, x−1 is also in S. If a nonempty subset S of
G is closed under the operation and inverses, then S is a group in its own right, called a subgroup
of G. We’ll study more general subgroups later, but for this section we are interested in a specific
kind of subgroup:

Def and Prop: Let x be an element of a group G. The set 〈x〉 of all powers of x is closed under
the operation on G and under inverses, so it is a subgroup of G, called the cyclic subgroup generated
by x.

(i) If there is no positive integer n for which xn = e, then we say x has infinite order; in symbols,
o(x) =∞. In this case the function ϕ : Z→ G : n 7→ xn is a one-to-one function with range
〈x〉, and it shows that, as a group, 〈x〉 behaves just like Z.

(ii) If there is a positive integer n for which xn = e, then the smallest such n is called the order of
x, denoted o(x). In this case, for o(x) = n, the function ψ : Zn → G : k 7→ xk is a one-to-one
function with range 〈x〉, and it shows that, as a group, 〈x〉 behaves just like Zn.

Pf of whatever isn’t a definition in this statement: The subset 〈x〉 is closed under the operation
because xmxn = xm+n; it is closed under inverses because (xn)−1 = x−n. So it is a subgroup of G.
In the case where there is no positive power of x that is equal to e, it is clear that ϕ has range 〈x〉.
to see it is one-to-one, suppose xm = xn where m ≥ n; then xm−n = e, so we must have m−n = 0,
i.e., m = n. In the case where o(x) = n <∞, we want to show first that ψ has range all of 〈x〉, i.e.,
every power of x is equal to xr for some r between 0 and n−1 (inclusive): Given the power xm, long-
divide m by n: m = qn+ r where q, r ∈ Z and 0 ≤ r < n; then xm = xqn+r = (xn)qxr = eqxr = xr.
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And to see that ψ is one-to-one, suppose xr = xs where 0 ≤ r ≤ s < n; then xs−r = e, but
0 ≤ s − r < n and the choice of n means s − r = 0, i.e., r = s. “Behaves just like” means
that adding in Z or Zn corresponds to multiplying in G: In the case of infinite order, we have
ϕ(n + m) = xn+m = xnxm = ϕ(n)ϕ(m), so the operations in the groups 〈x〉 and Z are essentially
identical. And in the case of order n, let s, t be elements of Zn and long-divide the integer s+ t by
n: s+ t = nq+r. Then s⊕ t = r, and ψ(s)ψ(t) = xsxt = xs+t = xnq+r = (xn)qxr = xr = ψ(s⊕ t).
So the operations in the groups 〈x〉 and Zn are essentially identical.//

Here is a diagram of what “the operations are essentially identical” means in the infinite-order
case:

Z × Z +−→ Z
↓ ϕ ↓ ϕ ↓ ϕ
G × G

op−→ G

If we start with any pair of integers in the upper left, going across and then going down gives the
same result as going down (side-by-side) and then going across.

Ex: In the group GL(3,R), let

A =

 0 1 0
0 0 1
1 0 0

 .

Then

A2 =

 0 0 1
1 0 0
0 1 0

 , A3 =

 1 0 0
0 1 0
0 0 1

 = I

so 〈A〉 = {A,A2, I} behaves just like Z3:

ϕ : Z3 → 〈A〉 : 0 7→ I , 1 7→ A , 2 7→ A2

⊕ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

I A A2

I I A A2

A A A2 I
A2 A2 I A

If xn = e, then (x−1)n = (xn)−1 = e−1 = e, and vice versa, so o(x), the smallest n for which
xn = e, is the same as o(x−1), and if one is infinite, so is the other. We can say more when we are
talking about finite orders, but the proofs suddenly involve a lot of Math 250 results. Before we
give the proof, let’s take an example, looking at the orders of the elements of Z12:

• 0 has order 1 — the identity in any group is the only element of order 1.

• 1 has order 12: we need to add 12 copies of 1 to get 0.

• 2 has order 6: 2(2) = 4, 3(2) = 6, 4(2) = 8, 5(2) = 10, 6(2) = 0.

• The idea that works for 2 also works for the other divisors of 12: 3 has order 4, 4 has order
3, 6 has order 2.

• How many copies of 5 will we need to add to get 0? I.e., in Z, how many 5’s will we need to
add to get a multiple of 12? Well, because 5 has no factor in common with 12, we only get
n(5) = m(12) if n is divisible by 12; so 5 has order 12. The same is true of the other numbers
less than 12 and relatively prime to it: 7 and 11.
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• 1(8) = 8, 2(8) = 4, 3(8) = 0; i.e., in Z, a multiple of 8, n(8), is a multiple of 12 only if n
makes up the factor 3 of 12 that is not in 8. In the equation n(8) = m(12), divide both sides
by the gcd of 12 and 8: n(2) = m(3); because 3 is relatively prime to 2, it must divide n. So
o(8) = 3 = 12/4 = 12/ gcd(12, 8).

• And the same idea works for 9 and 10: In Z, 1(9) = 9, 2(9) = 18, 3(9) = 27, 4(9) = 36, a
multiple of 12: o(9) = 4 = 12/3 = 12/ gcd(12, 9); and 6(10) = 60 is the smallest common
multiple of 10 and 12: o(10) = 6 = 12/2 = 12/ gcd(12, 10).

So the idea seems to be that, in Zn, the order of an element k is n/ gcd(n, k). If this is right, it
should translate to any cyclic group 〈x〉 where o(x) = n.

We need two things from Math 250, i.e., from arithmetic in Z: the idea of long division, and
the fact that, if a divides a product bc and gcd(a, b) = 1, then a|c. The text proves these in great
detail, but because they are now done in Math 250, I will assume we know them.

Prop: Suppose the group element x has finite order n. Then:

(i) For any integer m, xm = e if and only if n|m; and

(ii) For any integer k, o(xk) = n/ gcd(n, k).

Pf: (i) Of course if n|m, say m = nd, then xm = (xn)d = ed = e. Conversely, suppose xm = e, and
long-divide m by n: m = qn+ r where q, r ∈ Z with 0 ≤ r < n. Then we have e = xm = xqn+r =
(xn)qxr = eqxr = xr. But n was the smallest positive power of x that is e, so r, which is less than
n, cannot be positive, i.e., it must be 0. Thus, n divides m = qn.

(ii) Because gcd(n, k) is a factor of k, k/ gcd(n, k) is an integer, so (xk)n/ gcd(n,k) = (xn)k/ gcd(n,k) =
ek/ gcd(n,k) = e. So suppose there is an integer m for which (xk)m = e; in view of (i), it is enough
to show that n/ gcd(n, k) divides m: We know that xkm = e, so n|km, say km = ns where s ∈ Z.
Dividing both sides by gcd(n, k) gives (k/ gcd(n, k))m = (n/ gcd(n, k))s. But k/ gcd(n, k) and
n/ gcd(n, k) have no factors in common — we have divided out all the common factors — so they
are relatively prime; so the fact that n/ gcd(n, k) divides the product (k/ gcd(n, k))m but is rel-
atively prime to the first factor means that it must divide the second factor. Thus, n/ gcd(n, k)
divides m, as required.//

Def: If a group G includes an element x for which all the elements of G are powers of x, i.e.,
〈x〉 = G, then G is called a cyclic group, and x is called a generator of G.

If o(x) = ∞, we still call 〈x〉 a cyclic group, even though nothing is “cycling”. For any group
G, the cardinality |G| is called the order. If G = 〈x〉 is cyclic, then |G| = o(x).

Because the powers of an element all commute with each other, a cyclic group is abelian. But
there are abelian groups that are not cyclic: The text gives the examples of (Q,+) (assume x is a
generator; then x/2 is in Q, but it is not an integral multiple — power — of x, a contradiction) and
the “Klein Four-Group” V = {e, a, b, c} with the operation [inspired by Z2

2 under addition modulo
2]

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

[

(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)

] .
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Every element is its own inverse, so no element has order 4.
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