Section 5: Subgroups

In the last section, we learned that a nonempty subset S of a group G was a "subgroup" iff it was closed under the operation in G and under inverses. The text wisely points out that a subset which is a group need not be a subgroup, because the operation may be differqent. For example, $(\mathbb{Q},+)$ and $\left(\mathbb{Q}^{+}, \cdot\right)$ are both groups, and $\mathbb{Q}^{+} \subset \mathbb{Q}$, but \mathbb{Q}^{+}is not called a subgroup of \mathbb{Q}.

We have already seen that, for any element x of any group $G,\langle x\rangle$ is a subgroup of G. In particular, $\{e\}$ is a subgroup of any group (the "trivial subgroup"); and of course any group is a subgroup of itself. Here are a few other examples:

Examples:

- \mathbb{Z} is a subroup (under addition) of \mathbb{Q}, which is a subgroup of \mathbb{R}, which is a subgroup of \mathbb{C}.
- \mathbb{Q}^{+}is a subgroup under multiplication of $\mathbb{Q}-\{0\}$, which is a subgroup of $\mathbb{R}-\{0\}$, which is a subgroup of $\mathbb{C}-\{0\}$. Another subgroup of $\mathbb{R}-\{0\}$ is \mathbb{R}^{+}, and of course $\mathbb{R}^{+} \cap(\mathbb{Q}-\{0\})=\mathbb{Q}^{+}$. We will soon see that any intersection of subgroups is another subgroup.
- Any subspace of any vector space is a subgroup under addition, as well as being closed under scalar multiplication, as we learn in Math 214. In particular, a plane through the origin of \mathbb{R}^{3} is a subgroup of \mathbb{R}^{3} under addition.
- $G L(n, \mathbb{R})$ has many subgroups. One of the best known is $S L(n, \mathbb{R})=\{A \in G L(n, \mathbb{R})$: $\operatorname{det}(A)=1\}$, called the the special linear group of degree n. (Verify this is a subgroup. The mathematician Serge Lang has written a book titled $S L(2, \mathbb{R})$.) The set of upper triangular matrices is an additive subgroup of $M_{n}(\mathbb{R})$, and the set of upper triangular matrices with no zeros on the main diagonal is a multiplicative subgroup of $G L(n, \mathbb{R})$. Replace "upper triangular" (both times) in the last sentence with "lower triangular" or by "diagonal", and the sentence remains true.
- The Klein Four-Group $V=\{e, a, b, c\}$ is so small that its subgroups aren't very interesting, but at least it is easy to write them all down: $\langle e\rangle,\langle a\rangle,\langle b\rangle,\langle c\rangle, V$. A "subgroup diagram" or "subgroup lattice" displays their containment relationships: a line angling up means the higher contains the lower as a subgroup.

- The text introduces the group $Q_{8}=\{I, J, K, L,-I,-J,-K,-L\}$ of unit quaternions, where $J^{2}=K^{2}=L^{2}=-I$. The multiplication could have been determined by a table; but as the text points out, it would be necessary to check associativity, so it uses the connection to matrices in $G L(2, \mathbb{C})$. (It also could have been done in $G L(4, \mathbb{R})$, but the text avoids matrices that large.) The diagram below to the left is a mnemonic (memory aid) for the operation: clockwise is a positive product and counterclockwise is negative: $J K=L$, but $K J=-L$, etc. The diagram below to the right is the subgroup lattice:

I saw this group first in the context of the "algebra of quaternions", in the more common notation 1 for I, i for J, j for K and k for L. The algebra of quaternions is the set of expressions

$$
a+b i+c j+d k, \text { where } a, b, c, d \in \mathbb{R}
$$

It is an extension of \mathbb{C} over \mathbb{R}. Our text would deal with it as a "subalgebra of $M_{2 \times 2}(\mathbb{C})$ over $\mathbb{R}^{\prime \prime}$.

- The symmetric group on n letters, \mathcal{S}_{n}, i.e., the set of one-to-one functions from $\{1,2, \ldots, n\}$ onto itself, a group under composition, has a subgroup: the set of all elements f of \mathcal{S}_{n} for which $f(n)=n$ - i.e., the functions that don't move n. It is fairly clear that this subgroup "behaves exactly like" \mathcal{S}_{n-1}. And there is nothing special here about the set $\{1,2, \ldots, n\}$ and the subset $\{n\}$: For any set X and subset Y of X, the symmetric group $\mathcal{S}(X)$ has a subgroup consisting of the set of all elements f of $\mathcal{S}(X)$ for which $f(y)=y$ for every y in Y, which "behaves exactly like" $\mathcal{S}(X-Y)$. The subset of all elements f of $\mathcal{S}(X)$ for which $f(y) \in Y$ for every y in Y and $f(z) \in X-Y$ for every $z \in X-Y$ is another subgroup of $\mathcal{S}(X)$. (If Y is finite, then we don't need the extra part about z 's in $X-Y$, because if f takes all of Y to itself, then $f(Y)$ is all of Y, so z 's outside of Y must go to elements outside of Y. But if Y is infinite, then a function may take Y into Y but not onto it, so its inverse would not take Y into Y. Example: The "add one" function $f(x)=x+1$ is an element of $\mathcal{S}(\mathbb{Z})$ for which $f\left(\mathbb{Z}^{+}\right) \subseteq \mathbb{Z}^{+}$; but its inverse, the "subtract one" function, takes 1 to 0 , outside of \mathbb{Z}^{+}. So the subset of $\mathcal{S}(\mathbb{Z})$ consisting of functions f for which $f\left(\mathbb{Z}^{+}\right) \subseteq \mathbb{Z}^{+}$is not a subgroup of $\mathcal{S}(\mathbb{Z})$, because it is not closed under inverses.)
- Let G be any group and x be a fixed element of G. Then $Z(x)=\{g \in G: g x=x g\}$, the set of all elements that "commute with" x, is easily checked to be a subgroup of G, called the centralizer of x. Again, there is nothing special about a single-element set $\{x\}$: For any subset X of G, the "centralizer of X ", $Z(X)=\{g \in G: g x=x g \forall x \in X\}$, is a subgroup of G. (We could make this a corollary of the result below that an intersection of a family of subgroups is again a subgroup, because $Z(X)=\bigcap\{Z(x): x \in X\}$.) In particular, the centralizer of G itself, $Z(G)$, the set of all elements of G that commute with every element of G, is a subgroup, called the center of G.
Some examples of centers and centralizers:
* If G is abelian, then of course $Z(G)=G$ and for each element x of $G, Z(x)=G$. More generally, if $x \in Z(G)$, then $Z(x)=G$.
* In the group Q_{8} of unit quaternions, $Z\left(Q_{8}\right)=\langle-I\rangle$, because none of the other 6 elements commute with everything. But $Z(\langle J\rangle)=\langle J\rangle$; the powers of J commute with J, but none of the other four elements of Q_{8} do.
* I claim that $Z(G L(2, \mathbb{R}))=\{a I: a \in \mathbb{R}-\{0\}\}$, the set of nonzero "scalar matrices". It is easy to see that these matrices commute with every element of $G L(2, \mathbb{R})$, so we need to see that no other elements do so: Suppose $A=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in Z(G L(2, \mathbb{R}))$; then

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{ll}
c & d \\
a & b
\end{array}\right)=\left(\begin{array}{ll}
b & a \\
d & c
\end{array}\right),
$$

so $c=b$ and $a=d$. Also
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{cc}a & b \\ b+a & a+b\end{array}\right)=\left(\begin{array}{ll}a+b & b \\ b+a & a\end{array}\right)$
so $a=a+b$, and hence $b=0$. So $A=a I$ for some nonzero scalar a.

* We can list the $3!=6$ elements of \mathcal{S}_{3}, and one of them is $f: 1 \mapsto 2,2 \mapsto 3,3 \mapsto 1$. We can check that $f^{2}: 1 \mapsto 3,2 \mapsto 1,3 \mapsto 2$ and that $f^{3}=e$, the identity function. The other three elements of \mathcal{S}_{3} reverse two of the numbers $1,2,3$ and leave the third fixed; and we can check that they do not commute with f. For example, letting $g: 1 \mapsto 2,2 \mapsto 1,3 \mapsto 3$:

$$
f \circ g: 1 \mapsto 3,2 \mapsto 2,3 \mapsto 1, \quad \text { but } \quad g \circ f: 1 \mapsto 1,2 \mapsto 3,3 \mapsto 2 .
$$

So $Z(\langle f\rangle)=\langle f\rangle$. And $Z\left(\mathcal{S}_{3}\right)=\{e\}$.

Prop: Let $\left\{H_{\lambda}: \lambda \in \Lambda\right\}$ be a family of subgroups of the group G. Then the subset $H=\bigcap\left\{H_{\lambda}\right.$: $\lambda \in \Lambda\}$ of G, consisting of the elements that are in every one of the H_{λ} 's, is also a subgroup of G.
$P f:$ Because the identity is in every one of the H_{λ} 's, it is in H, so H is not empty. To see that H is closed under the operation, take x, y in H; then because each H_{λ} is a subgroup and contains x, y, it also contains their product $x y$; so their product is also in H. To see that that H is closed under inverses, take x in H; then because x is in each H_{λ}, so is x^{-1}, so $x^{-1} \in H . / /$

The text shows that the union of two subgroups is never a subgroup unless it is one of them (i.e., unless one is contained in the other). The union of more subgroups may be a subgroup, but it probably isn't.

We can describe the subgroups of a cyclic group.
Prop: Let $G=\langle x\rangle$ be a cyclic group.
(i) Every subgroup of G is cyclic.
(ii) If G is infinite cyclic, then the subgroups of G are $\{e\},\langle x\rangle(=G),\left\langle x^{2}\right\rangle,\left\langle x^{3}\right\rangle, \ldots$, all distinct.
(iii) If G is finite cyclic of order n, then for each divisor d of n, G has exactly one subgroup of order d, namely $\left\langle x^{n / d}\right\rangle$, and it has no other subgroups.

Pf: (i) The trivial subgroup $\{e\}$ is cyclic (generated by e), so take a nontrivial subgroup H of G. Then H contains some positive power of the generator x; suppose the smallest such power is x^{k}. We want to show that $H=\left\langle x^{k}\right\rangle$: Because $x^{k} \in H$, we have $\left\langle x^{k}\right\rangle \subseteq H$. For the reverse inclusion, take any element x^{m} of H, and long-divide m by k, say $m=d k+r$ where $d, r \in \mathbb{Z}$ and $0 \leq r<k$. Then $x^{r}=x^{m-d k}=x^{m}\left(x^{k}\right)^{-d} \in H$ (because H is closed under the operation and inverses); but k
was chosen so that x^{k} was the smallest positive power of x in H, so r can't be positive, i.e., $r=0$. Thus, $x^{m}=\left(x^{k}\right)^{d} \in\left\langle x^{k}\right\rangle$, and so $H \subseteq\left\langle x^{k}\right\rangle$.
(ii) Clearly the sets of powers of x^{k} and x^{-k} are the same set, so the given list includes all the subgroups of G; so we only have to show that they are distinct if G is infinite cyclic. The text leaves this as an exercise for the reader, so I will, too.
(iii) Now we are supposing that G is finite of order n. From the proof given in (i), any nontrivial subgroup H of G has the form $\left\langle x^{k}\right\rangle$ where k is the smallest positive integer for which $x^{k} \in H$. We want to show that this k is a divisor of n : We know $x^{n}=e \in H$, and long-dividing n by k shows, just as in (i), that $k \mid n$, say $n=k d$. We proved in Section 4 that $o\left(x^{k}\right)=n / \operatorname{gcd}(n, k)=n / k$, so $\left\langle x^{k}\right\rangle$ is a subgroup of G of order n / k. Thus, every subgroup of G has order a divisor $n / k=d$ of n and is generated by $x^{k}=x^{n / d}$. Conversely, if d is a divisor of n, then we also proved in Section 4 that $x^{n / d}$ is an element of order $n / \operatorname{gcd}(n,(n / d))=n /(n / d)=d$, so $\left\langle x^{n / d}\right\rangle$ is a subgroup of order $d . / /$

Cor: In a finite cyclic group $G=\langle x\rangle$ of order $n,\left\langle x^{k}\right\rangle=\left\langle x^{\operatorname{gcd}(n, k)}\right\rangle$. In particular, $\left\langle x^{r}\right\rangle=\left\langle x^{s}\right\rangle$ iff $\operatorname{gcd}(n, r)=\operatorname{gcd}(n, s)$.

Pf: For the first equality, we need to show that each of x^{k} and $x^{\operatorname{gcd}(n, k)}$ is a power of the other. Because k is a multiple of $\operatorname{gcd}(n, k), x^{k}$ is a power of $x^{\operatorname{gcd}(n, k)}$; and because $\operatorname{gcd}(n, k)=n r+k s$ for some r, s in \mathbb{Z}, we have $x^{\operatorname{gcd}(n, k)}=\left(x^{n}\right)^{r}\left(x^{k}\right)^{s}=\left(x^{k}\right)^{s}$. Thus, $\left\langle x^{k}\right\rangle=\left\langle x^{\operatorname{gcd}(n, k)}\right\rangle$. It follows that, if $\operatorname{gcd}(n, r)=\operatorname{gcd}(n, s)$, then $\left\langle x^{r}\right\rangle=\left\langle x^{s}\right\rangle$. Conversely, if $\left\langle x^{r}\right\rangle=\left\langle x^{s}\right\rangle$, then $\left\langle x^{\operatorname{gcd}(n, r)}\right\rangle=\left\langle x^{\operatorname{gcd}(n, s)}\right\rangle$, and because the subgroups are equal and the exponents are factors of n, the exponents $\operatorname{gcd}(n, r)$ and $\operatorname{gcd}(n, r)$ are also equal.//

The text also includes the following useful fact: If S is a finite nonempty subset of a group G and S is closed under the operation, then S is also closed under inverses and hence is a subgroup of G. The proof is simple: Let $x \in S$; then because S is finite and closed under the operation, the powers of x cannot all be different, say $x^{p}=x^{q}$ where $p<q$. We get $x^{q-p}=e$, so x has finite order, and its inverse is a positive power of it, so $x^{-1} \in S$.

