
Section 5: Subgroups

In the last section, we learned that a nonempty subset S of a group G was a “subgroup” iff it
was closed under the operation in G and under inverses. The text wisely points out that a subset
which is a group need not be a subgroup, because the operation may be differqent. For example,
(Q,+) and (Q+, ·) are both groups, and Q+ ⊂ Q, but Q+ is not called a subgroup of Q.

We have already seen that, for any element x of any group G, 〈x〉 is a subgroup of G. In
particular, {e} is a subgroup of any group (the “trivial subgroup”); and of course any group is a
subgroup of itself. Here are a few other examples:

Examples:

• Z is a subroup (under addition) of Q, which is a subgroup of R, which is a subgroup of C.

• Q+ is a subgroup under multiplication of Q−{0}, which is a subgroup of R−{0}, which is a
subgroup of C−{0}. Another subgroup of R−{0} is R+, and of course R+∩ (Q−{0}) = Q+.
We will soon see that any intersection of subgroups is another subgroup.

• Any subspace of any vector space is a subgroup under addition, as well as being closed under
scalar multiplication, as we learn in Math 214. In particular, a plane through the origin of
R3 is a subgroup of R3 under addition.

• GL(n,R) has many subgroups. One of the best known is SL(n,R) = {A ∈ GL(n,R) :
det(A) = 1}, called the the special linear group of degree n. (Verify this is a subgroup. The
mathematician Serge Lang has written a book titled SL(2,R).) The set of upper triangular
matrices is an additive subgroup of Mn(R), and the set of upper triangular matrices with
no zeros on the main diagonal is a multiplicative subgroup of GL(n,R). Replace “upper
triangular” (both times) in the last sentence with “lower triangular” or by “diagonal”, and
the sentence remains true.

• The Klein Four-Group V = {e, a, b, c} is so small that its subgroups aren’t very interesting,
but at least it is easy to write them all down: 〈e〉, 〈a〉, 〈b〉, 〈c〉, V . A “subgroup diagram”
or “subgroup lattice” displays their containment relationships: a line angling up means the
higher contains the lower as a subgroup.

• The text introduces the group Q8 = {I, J,K,L,−I,−J,−K,−L} of unit quaternions, where
J2 = K2 = L2 = −I. The multiplication could have been determined by a table; but as
the text points out, it would be necessary to check associativity, so it uses the connection to
matrices in GL(2,C). (It also could have been done in GL(4,R), but the text avoids matrices
that large.) The diagram below to the left is a mnemonic (memory aid) for the operation:
clockwise is a positive product and counterclockwise is negative: JK = L, but KJ = −L,
etc. The diagram below to the right is the subgroup lattice:
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I saw this group first in the context of the “algebra of quaternions”, in the more common
notation 1 for I, i for J , j for K and k for L. The algebra of quaternions is the set of
expressions

a+ bi+ cj + dk , where a, b, c, d ∈ R .

It is an extension of C over R. Our text would deal with it as a “subalgebra of M2×2(C) over
R”.

• The symmetric group on n letters, Sn, i.e., the set of one-to-one functions from {1, 2, . . . , n}
onto itself, a group under composition, has a subgroup: the set of all elements f of Sn for
which f(n) = n — i.e., the functions that don’t move n. It is fairly clear that this subgroup
“behaves exactly like” Sn−1. And there is nothing special here about the set {1, 2, . . . , n} and
the subset {n}: For any set X and subset Y of X, the symmetric group S(X) has a subgroup
consisting of the set of all elements f of S(X) for which f(y) = y for every y in Y , which
“behaves exactly like” S(X − Y ). The subset of all elements f of S(X) for which f(y) ∈ Y
for every y in Y and f(z) ∈ X − Y for every z ∈ X − Y is another subgroup of S(X). (If Y
is finite, then we don’t need the extra part about z’s in X − Y , because if f takes all of Y to
itself, then f(Y ) is all of Y , so z’s outside of Y must go to elements outside of Y . But if Y
is infinite, then a function may take Y into Y but not onto it, so its inverse would not take
Y into Y . Example: The “add one” function f(x) = x + 1 is an element of S(Z) for which
f(Z+) ⊆ Z+; but its inverse, the “subtract one” function, takes 1 to 0, outside of Z+. So the
subset of S(Z) consisting of functions f for which f(Z+) ⊆ Z+ is not a subgroup of S(Z),
because it is not closed under inverses.)

• Let G be any group and x be a fixed element of G. Then Z(x) = {g ∈ G : gx = xg}, the
set of all elements that “commute with” x, is easily checked to be a subgroup of G, called
the centralizer of x. Again, there is nothing special about a single-element set {x}: For any
subset X of G, the “centralizer of X”, Z(X) = {g ∈ G : gx = xg ∀x ∈ X}, is a subgroup
of G. (We could make this a corollary of the result below that an intersection of a family
of subgroups is again a subgroup, because Z(X) =

⋂
{Z(x) : x ∈ X}.) In particular, the

centralizer of G itself, Z(G), the set of all elements of G that commute with every element of
G, is a subgroup, called the center of G.

Some examples of centers and centralizers:

∗ If G is abelian, then of course Z(G) = G and for each element x of G, Z(x) = G. More
generally, if x ∈ Z(G), then Z(x) = G.

∗ In the group Q8 of unit quaternions, Z(Q8) = 〈−I〉, because none of the other 6 elements
commute with everything. But Z(〈J〉) = 〈J〉; the powers of J commute with J , but
none of the other four elements of Q8 do.
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∗ I claim that Z(GL(2,R)) = {aI : a ∈ R− {0}}, the set of nonzero “scalar matrices”. It
is easy to see that these matrices commute with every element of GL(2,R), so we need

to see that no other elements do so: Suppose A =

(
a b
c d

)
∈ Z(GL(2,R)); then

(
0 1
1 0

)(
a b
c d

)
=

(
a b
c d

)(
0 1
1 0

)
⇒

(
c d
a b

)
=

(
b a
d c

)
,

so c = b and a = d. Also(
1 0
1 1

)(
a b
b a

)
=

(
a b
b a

)(
1 0
1 1

)
⇒

(
a b

b+ a a+ b

)
=

(
a+ b b
b+ a a

)
so a = a+ b, and hence b = 0. So A = aI for some nonzero scalar a.

∗ We can list the 3! = 6 elements of S3, and one of them is f : 1 7→ 2, 2 7→ 3, 3 7→ 1. We can
check that f2 : 1 7→ 3, 2 7→ 1, 3 7→ 2 and that f3 = e, the identity function. The other
three elements of S3 reverse two of the numbers 1, 2, 3 and leave the third fixed; and we
can check that they do not commute with f . For example, letting g : 1 7→ 2, 2 7→ 1, 3 7→ 3:

f ◦ g : 1 7→ 3, 2 7→ 2, 3 7→ 1, but g ◦ f : 1 7→ 1, 2 7→ 3, 3 7→ 2 .

So Z(〈f〉) = 〈f〉. And Z(S3) = {e}.

Prop: Let {Hλ : λ ∈ Λ} be a family of subgroups of the group G. Then the subset H =
⋂
{Hλ :

λ ∈ Λ} of G, consisting of the elements that are in every one of the Hλ’s, is also a subgroup of G.

Pf: Because the identity is in every one of the Hλ’s, it is in H, so H is not empty. To see that H is
closed under the operation, take x, y in H; then because each Hλ is a subgroup and contains x, y,
it also contains their product xy; so their product is also in H. To see that that H is closed under
inverses, take x in H; then because x is in each Hλ, so is x−1, so x−1 ∈ H.//

The text shows that the union of two subgroups is never a subgroup unless it is one of them
(i.e., unless one is contained in the other). The union of more subgroups may be a subgroup, but
it probably isn’t.

We can describe the subgroups of a cyclic group.

Prop: Let G = 〈x〉 be a cyclic group.

(i) Every subgroup of G is cyclic.

(ii) If G is infinite cyclic, then the subgroups of G are {e}, 〈x〉(= G), 〈x2〉, 〈x3〉, . . ., all distinct.

(iii) If G is finite cyclic of order n, then for each divisor d of n, G has exactly one subgroup of
order d, namely 〈xn/d〉, and it has no other subgroups.

Pf: (i) The trivial subgroup {e} is cyclic (generated by e), so take a nontrivial subgroup H of G.
Then H contains some positive power of the generator x; suppose the smallest such power is xk.
We want to show that H = 〈xk〉: Because xk ∈ H, we have 〈xk〉 ⊆ H. For the reverse inclusion,
take any element xm of H, and long-divide m by k, say m = dk + r where d, r ∈ Z and 0 ≤ r < k.
Then xr = xm−dk = xm(xk)−d ∈ H (because H is closed under the operation and inverses); but k
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was chosen so that xk was the smallest positive power of x in H, so r can’t be positive, i.e., r = 0.
Thus, xm = (xk)d ∈ 〈xk〉, and so H ⊆ 〈xk〉.

(ii) Clearly the sets of powers of xk and x−k are the same set, so the given list includes all the
subgroups of G; so we only have to show that they are distinct if G is infinite cyclic. The text
leaves this as an exercise for the reader, so I will, too.

(iii) Now we are supposing that G is finite of order n. From the proof given in (i), any nontrivial
subgroup H of G has the form 〈xk〉 where k is the smallest positive integer for which xk ∈ H. We
want to show that this k is a divisor of n: We know xn = e ∈ H, and long-dividing n by k shows,
just as in (i), that k|n, say n = kd. We proved in Section 4 that o(xk) = n/ gcd(n, k) = n/k, so 〈xk〉
is a subgroup of G of order n/k. Thus, every subgroup of G has order a divisor n/k = d of n and
is generated by xk = xn/d. Conversely, if d is a divisor of n, then we also proved in Section 4 that
xn/d is an element of order n/ gcd(n, (n/d)) = n/(n/d) = d, so 〈xn/d〉 is a subgroup of order d.//

Cor: In a finite cyclic group G = 〈x〉 of order n, 〈xk〉 = 〈xgcd(n,k)〉. In particular, 〈xr〉 = 〈xs〉 iff
gcd(n, r) = gcd(n, s).

Pf: For the first equality, we need to show that each of xk and xgcd(n,k) is a power of the other.
Because k is a multiple of gcd(n, k), xk is a power of xgcd(n,k); and because gcd(n, k) = nr+ ks for
some r, s in Z, we have xgcd(n,k) = (xn)r(xk)s = (xk)s. Thus, 〈xk〉 = 〈xgcd(n,k)〉. It follows that,
if gcd(n, r) = gcd(n, s), then 〈xr〉 = 〈xs〉. Conversely, if 〈xr〉 = 〈xs〉, then 〈xgcd(n,r)〉 = 〈xgcd(n,s)〉,
and because the subgroups are equal and the exponents are factors of n, the exponents gcd(n, r)
and gcd(n, r) are also equal.//

The text also includes the following useful fact: If S is a finite nonempty subset of a group G
and S is closed under the operation, then S is also closed under inverses and hence is a subgroup
of G. The proof is simple: Let x ∈ S; then because S is finite and closed under the operation, the
powers of x cannot all be different, say xp = xq where p < q. We get xq−p = e, so x has finite
order, and its inverse is a positive power of it, so x−1 ∈ S.
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