
Section 8: Symmetric Groups

The point of this section is to establish some notation used in talking about the symmetric
groups Sn on finite sets {1, 2, . . . , n}. Of course, an element f of Sn is technically a set of ordered
pairs

{(1, f(1)), (2, f(2)), . . . , (n, f(n))}

and could be written as
f : 1 7→ f(1), 2 7→ f(2), . . . , n 7→ f(n) .

But another common notation is

f =
(

1 2 . . . n
f(1) f(2) . . . f(n)

)
.

So the first row is the set 1 through n in the usual order and the second line is the same set but in
any order. (So Sn is related to the set of all permutations of 1 through n, but the composition of
functions makes a group out of this set.) Composition of functions is still done right to left:(

1 2 3 4
2 3 1 4

)
◦
(

1 2 3 4
1 2 4 3

)
=
(

1 2 3 4
2 3 4 1

)
while (

1 2 3 4
1 2 4 3

)
◦
(

1 2 3 4
2 3 1 4

)
=
(

1 2 3 4
2 4 1 3

)
An even simpler, but not unique, way to write down an element of Sn is its “disjoint cycle

decomposition”. First, an r-cycle in Sn is a function that takes one element, say k1, of {1, 2, . . . , n}
to, say, k2, k2 to k3, and so on until kr−1 is taken to kr, which is taken to k1; and all the other
elements of {1, 2, . . . , n} are taken to themselves. We will write such an r-cycle as (k1, k2, k3, . . . , kr).
Of course, it could also be written as (k2, k3, . . . , kr, k1), or as (k3, k4, . . . , kr, k1, k2), etc. One-cycles
are just the identity function, so we will just write them as e (or not at all in a composition with
other functions), and 2-cycles (k1, k2) are sometimes called transpositions. It is easy to see that the
order of an r-cycle, as an element of Sn, is r.

Second, we need the following idea:

Def: Two elements f, g of Sn are called disjoint if, for every element k of {1, 2, . . . , n}, f(k) 6= k
implies g(k) = k (and vice versa); i.e., if f moves k, then g does not.

Prop: Disjoint elements of Sn commute.

Pf: Suppose f, g are disjoint elements of Sn, and consider any k in {1, 2, . . . , n}.

• Suppose first that g(k) 6= k. Then because g is one-to-one, g(g(k)) 6= g(k), i.e., g moves both
k and g(k), so f cannot move either. So

(f ◦ g)(k) = f(g(k)) = g(k) while (g ◦ f)(k) = g(f(k)) = g(k) .

• Now suppose g(k) = k. Then f(k) may either equal k or not. If f(k) = k, then

(f ◦ g)(k) = f(g(k)) = f(k) = k while (g ◦ f)(k) = g(f(k)) = g(k) = k ;

while if f(k) 6= k, then f(f(k)) 6= f(k), so we must have g(f(k)) = f(k), and hence

(f ◦ g)(k) = f(g(k)) = f(k) while (g ◦ f)(k) = g(f(k)) = f(k) .
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Thus we have (f ◦ g)(k) = (g ◦ f)(k) for all k in {1, 2, . . . , n}, so f ◦ g = g ◦ f .//

Now we argue that any element of S can be written as a product (composition) of disjoint
cycles. If we take a sufficiently large example, it will be clear how to do this in general: Take the
following element of S12:

f =
(

1 2 3 4 5 6 7 8 9 10 11 12
3 7 6 5 1 4 12 8 10 9 2 11

)
We begin a cycle with 1, which goes to 3, which goes to 6, which goes to 4, which goes to 5, which
goes to 1; so the first cycle is (1, 3, 6, 4, 5). That cycle does not include 2, so we begin a new cycle
with 2: 2 goes to 7, which goes to 12, which goes to 11, which goes to 2, so the second cycle is
(2, 7, 12, 11). Now 3, 4, 5, 6 and 7 have already appeared in cycles, so we begin a third cycle with
8; but 8 goes to itself, and we do not bother to write the 1-cycle (8). Then 9 goes to 10, which
goes to 9, so another cycle is the transposition (9, 10). Because 11 and 12 have already appeared
in cycles, our “factorization” of f is complete:

f = (1, 3, 6, 4, 5)(2, 7, 12, 11)(9, 10)

— or as

(6, 4, 5, 1, 3)(7, 12, 11, 2)(9, 10) or (11, 2, 7, 12)(10, 9)(3, 6, 4, 5, 1) or . . .

In this way, every element of any Sn can be written as the product of disjoint cycles. Because the
cycles are disjoint, i.e., move different subsets of {1, 2, 3, . . . , n}, and (as a result) they commute,
the order of an elements of Sn is the least common multiple of the lengths of the cycles in its disjoint
cycle decomposition. So the order of the f we have been considering is lcm(5, 4, 2) = 20. (Writing
down the powers of an r-cycle can be interesting. If r is prime, then all its powers are r-cycles.
But if r = st, say, then its s-th power is a composition of s disjoint t-cycles.)

Finally, we note that every r-cycle can be written as the product of transpositions (which are
not disjoint!): It is easily checked that

(k1, k2, k3, . . . , kr−1, kr) = (k1, kr)(k1, kr−1) . . . (k1, k3)(k1, k2) .

Thus, for example, the f in Z12 from above could be written as

f = (1, 3, 6, 4, 5) (2, 7, 12, 11) (9, 10)
= (1, 5)(1, 4)(1, 6)(1, 3) (2, 11)(2, 12)(2, 7) (9, 10)

Because there are r ways of writing an r-cycle, the transpositions in this product are not unique:
The same f could also be written as

f = (11, 2, 7, 12) (10, 9) (3, 6, 4, 5, 1)
= (11, 12)(11, 7)(11, 2) (10, 9) (3, 1)(3, 5)(3, 4)(3, 6)

Also, a transposition has order 2, so we can throw in two copies of any transposition side-by-side
anywhere in this product without changing the result. Etc., etc.

But there is one thing that remains constant in all the ways of writing a given element of Sn as
a product of transpositions: the parity — oddness or evenness — of the number of transpositions.
The proofs of this fact are ugly, with lots of cases; the text’s approach is straightforward and works
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reasonably well. But I like the following, which argues that every transposition changes the parity
of the number of “backward pairs” in a permutation of 1 through n: In a permutation k1, k2, . . . , kn

of 1 through n, we can look at each of the pairs, i.e., the two-element subsets of {1, 2, 3, . . . , n}.
If in that permutation a given pair is in its natural order, with the smaller first, the pair is called
“forward” in that permutation; if the larger of the pair appears first, it is a “backward pair”.
So for example in the permutation 3,5,1,2,4, the pairs {1, 2}, {1, 4}, {2, 4}, {3, 4} and {3, 5} are
forward, while {1, 3}, {1, 5}, {2, 3}, {2, 5} and {4, 5} are backward. The argument for the theorem
will be based on the following arithmetic fact: Suppose we have two permutations, f and g say,
of 1, 2, . . . , n, and that f has m backward pairs. Further suppose that in going from f to g, we
have changed the “direction” of an odd number of pairs, say 2k + 1 of them — some from forward
to backward (say there are p of these), and some from backward to forward (say there are q of
these). Then we have p + q = 2k + 1, and the number of backward pairs in g is m + p − q. Now
m + p− q = m + (p + q)− 2q = m + (2k + 1)− 2q = m + 2(k− q) + 1, which has a different parity
from m; so changing the direction of an odd number of pairs changes the parity of the number of
backward pairs.

Thm: If an element of Sn is written in two different ways as a product of transpositions, then the
parities of the numbers of transpositions in the two factorizations are the same.

Pf: Suppose that we compose an element

f =
(

1 2 . . . n
f(1) f(2) . . . f(n)

)
of Sn with the transposition g = (r, s) where r < s:

fg =
(

1 2 . . . n
f(1) f(2) . . . f(n)

)(
1 2 . . . r . . . s . . . n
1 2 . . . s . . . r . . . n

)
=

(
1 2 . . . r . . . s . . . n

f(1) f(2) . . . f(s) . . . f(r) . . . f(n)

)
We want to argue that the number of pairs that have changed from forward to backward or vice
versa from the second row of f to the second row of fg is odd; so the parity of the number of
backward pairs in the second row of f is different from that of the second row of fg. The result
then follows, because the identity has an even number (namely 0) of backward pairs, and each time
a transposition is added to the composition, the parity of the backward pairs changes: Odd number
of transpositions, odd number of backward pairs; even number of transpositions, even number of
backward pairs. But the number of backward pairs is a property of the permutation, independent
of which transpositions were composed to get it (as the second row of an element of Sn).

So we look at each of the pairs from {1, 2, 3, . . . , n}, in the form {f(i), f(j)}: If neither i nor
j is one of r or s, that pair has the same “direction”, either backward or forward, in the second
rows of f and fg. The pairs {f(i), f(r)} where either i < r or i > s don’t change direction in
going from f to fg. And the same is true of the pairs {f(i), f(s)} where either i < r or i > s. The
pairs {f(i), f(r)} and {f(i), f(s)} where i is strictly between r and s all change direction from f
to fg; and there are an even number of them — to be exact, 2(s − r − 1) of them. Finally, the
pair {f(r), f(s)} changes direction. So the number of backward pairs does change parity from f to
fg.//

Cor and Def: The elements of Sn that can be written as the composition of an even number of
transpositions are called even permutations. For n ≥ 2, they are exactly half of the elements of Sn;
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the rest are called odd permutations. The set An of all even permutations forms a subgroup of Sn,
called the alternating group of degree n.

Pf of what is not a definition in this statement: For n ≥ 2, if f is an even permutation, then
(1, 2)◦f is an odd permutation, and if g is odd, then (1, 2)◦ g is even. So we have inverse functions
An → (Sn −An) and (Sn −An)→ An, both given by left composition by (1, 2); because they are
inverses, they are bijections, so the two sets have the same number of elements; so half the elements
of Sn are odd and half are even.

To see that An is a subgroup, we only need to note that the identity function is even (0 is an
even number of transpositions), the composite of two even permutations is even (which is clear),
and the inverse of an even permutation is even (reverse the transpositions in the composition to
get the inverse; for example, the inverse of (1, 2)(1, 3)(2, 3) is (2, 3)(1, 3)(1, 2) — a permutation is
even iff its inverse is also).//

Class participation interlude: Order from the disjoint cycle decomposition. Recall that (1, 4, 3, 2) =
(1, 2)(1, 3)(1, 4).

Questions:

1. If an r-cycle is factored into a composite of transpositions as shown in class, how many
transpositions are there?

2. So an r-cycle is odd [respectively even] if r is . . .

3. An r-cycle has the same parity as the integer . . . (looking for a formula)

4. A composition of an r1-cycle and an r2-cycle has the same parity as the integer . . . (looking
for a formula)

5. A composition of s cycles, with lengths r1, r2, . . . , rs respectively, has the same parity as the
integer . . . (looking for a formula)

Answers:

1. r − 1

2. even [respectively odd]

3. r − 1

4. r1 + r2 − 2

5. (
∑s

i=1 ri)− s

End of interlude

In S3, where we are using the notation f = (1, 2, 3) and g = (1, 2), we have A3 = 〈f〉, and the
odd permutations are g, fg = (1, 3) and f2g = (2, 3). We want to describe the subgroups of S3: Of
course we have {e}, 〈f〉 (which has 3 elements), 〈g〉, 〈fg〉, 〈f2g〉 (each of which has two elements),
and S3 itself. Now any subgroup that contains both f and g contains all of S3, so with a little trial
and error we can show that there are no other subgroups. (For example, if a subgroup contains
both fg and f2, then it contains (f2)2 = f and f−1(fg) = g, so it is all of S3.) The subgroup
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lattice is

It was mentioned earlier that the subset of elements of Sn that preserve some sort of structure
often form a subgroup of Sn. One example of this (at least for n ≥ 3) is the dihedral group of
degree n, denoted Dn. The idea is that we picture a “regular n-gon”, a polygon in the plane that
(is not “re-entrant”, i.e., it doesn’t cross itself, and) has all its sides the same length and all its
interior angles the same size, sitting in a frame that fits around it. We consider motions of the
regular n-gon that put it back down in the frame, but with n-gon corners in different frame corners.
For example, a square, i.e., a regular 4-gon, could be rotated 90◦ clockwise; or, it could be flipped
in its axis of symmetry through two opposite vertices or two opposite sides:

We can make an element of Sn correspond to such a repositioning as follows: First, we number
the vertices of both n-gon and frame in the natural order (let’s say clockwise), initially so that the
numbers match. Then we reposition the n-gon in the frame. The element of Sn that corresponds
to this motion is given by: the entry in top row gives the number of the n-gon vertex and the
entry below it is the number of the frame corner into which it is placed. So the element f of

S4 corresponding to the 90◦ clockwise rotation is
(

1 2 3 4
2 3 4 1

)
= (1, 2, 3, 4), and the one g

corresponding to the flip in the 1-3 axis is
(

1 2 3 4
1 4 3 2

)
= (2, 4). The set of all elements of Sn

that correspond to such motions of the regular n-gon is denoted Dn. We have n choices for where
n-gon corner 1 should go, then only two choices for where corner 2 should go (because it must go to
one of the frame corners next to wherever n-gon corner 1 went), and then the rest of the vertices fall
into place; so Dn has 2n elements. One of these is rotation of 360◦/n, the n-cycle (1, 2, 3, . . . , n),
and its powers, n of them in all (including the identity). The n-gon has n axes of symmetry (if n is
even, half go through two opposite vertices and half through two opposite edges, while if n is odd,
they all go through a vertex and the opposite side); flips in these axes of symmetry give n more
elements of Dn, each having order 2. But that gives us 2n elements of Dn, so we have listed the
entire Dn.

In all the various Dn’s, we will consistently use the notation f for the rotation (1, 2, . . . , n)
through an angle of 360◦/n clockwise, and g for the flip in the axis of symmetry through the frame
vertex labeled 1: g = (2, n)(3, n− 1) . . ., where the last ordered pair in g is, if n is even, (n

2 , n
2 + 2)

and, if n is odd, (n+1
2 , n+3

2 ). We can check that gf = fn−1g, either by composing the elements of
Sn: [with n = 4]

gf = (2, 4)(1, 2, 3, 4) = (1, 4)(2, 3) , f3g = (1, 4, 3, 2)(2, 4) = (1, 4)(2, 3) ,

or by moving the n-gon in its frame: [again with n = 4]
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(It is natural for readers of English to do things left to right; BUT, because we are thinking of
Dn as part of Sn, we should probably always think of doing the motions in Dn from right to left,
relative to the frame. So, for example, in D4, whenever we have g, we should do the flip in the
axis from lower left to upper right, no matter where the polygon corner 1 is.) With the equation
gf = fn−1g and the fact that o(f) = n and o(g) = 2, we can write

Dn = {e, f, f2, . . . , fn−1, g, fg, f2g, . . . , fn−1g}

and build the entire group table of Dn. In particular, the fkg’s are the flips in various axes of
symmetry and have order 2. You should check that the flip h in the horizontal axis of the square
above, (1, 2)(3, 4) as an element of Sn, is just fg. (Warning: When we turn our attention back to
the larger group Sn, or in other groups, we may resume using f and g to mean general elements,
not these specific ones. There aren’t enough letters available to let some get “bound” for all time
to the same meaning.)
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Two special cases:
n = 3: D3 is a subgroup of S3, and |D3| = 2(3) = 6 = 3! = |S3|, so they are equal.
n = 4: D4 is a group of 8 elements, having 5 elements of order 2 (the flips and a rotation of

180◦), so it is essentially different from the groups Z8, which has only one; Z2×Z4, which has three;
Z2 × Z2 × Z2, which has seven; and the quaternion group Q8, which has one (and is different from
Z8 because it is nonabelian). So there are at least five different groups of order 8.

Example (just to get used to some of these ideas): What is An ∩Dn? Recall that Dn consists
of products of f , rotation of the n-gon by one corner inside its frame, and g, flip of the n-gon
in its axis of symmetry through vertex 1. Now f , as an element of Sn, is an n-cycle, which
is a product of n − 1 2-cycles, so it is in An when n is odd. But g is harder: It is the product
(2, n)(3, n−1) . . . , where the pairs stop at one of two places, depending on whether n is even or odd:

g =
{

(2, n)(3, n− 1) . . . (n/2, n/2 + 2) if n is even
(2, n)(3, n− 1) . . . ((n + 1)/2, (n + 3)/2) if n is odd

The number of 2-cycles in g is n/2 − 1 if n is even and (n + 1)/2 − 1 = (n − 1)/2 if n is odd. So
whether g is in An depends on the residue of n mod 4:

• If n ≡ 0 mod 4, then n is even, so f /∈ An; and the number of 2-cycles in g is n/2− 1, which
is odd, so g /∈ An. Thus in this case

An ∩Dn = {e, f2, f4, . . . , fn−2, fg, f3g, . . . , fn−1g} .

• If n ≡ 1 mod 4, then n is odd, so f ∈ An; and the number of 2-cycles in g is (n−1)/2, which
is even, so g ∈ An. Thus in this case

An ∩Dn = Dn .

• If n ≡ 2 mod 4, then n is even, so f /∈ An; and the number of 2-cycles in g is n/2− 1, which
is even, so g ∈ An. Thus in this case

An ∩Dn = {e, f2, f4, . . . , fn−2, g, f2g, . . . , fn−2g} .

• If n ≡ 3 mod 4, then n is odd, so f ∈ An; and the number of 2-cycles in g is (n−1)/2, which
is odd, so g /∈ An. Thus in this case

An ∩Dn = {e, f, f2, . . . , fn−1} = 〈f〉 .

Please don’t try to memorize these cases — this question was only asked to familiarize us with the
ideas of An and Dn.

Prop: If H is a subgroup of Sn, then either H ⊆ An or H ∩An consists of half the elements of H.

Pf: Challenge. Hint: If g ∈ H but g /∈ An, then x 7→ xg and y 7→ yg−1 are inverse bijections
between H ∩ An and H − (H ∩ An).//
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