
Section 9: Equivalence Relations; Cosets

Def: A (binary) relation on a set S is a subset R of S × S. If (a, b) ∈ R, we write aRb and say “a
is R-related to b”.

Like the definition of a function as a set of ordered pairs, this definition conveys very little
sense of what a relation is. It is really intended to serve as a “verb” in a sentence with subject
and direct object elements of S; if (a, b) ∈ R, then the sentence aRb is true, while if (a, b) /∈ R,
then the sentence aRb is false. Our text hurries on to the particular kind of relation that we are
presently interested in, namely an equivalence relation, but there are other kinds of relations. One
of which I am fond is a “partial order relation”, like “is a subset of” among subsets of a given set.
Just to give an example of a relation, let’s take the family P(A) of subsets of the set A = {b, c}:
P(A) = {∅, {b}, {c}, A}, and the partial order relation “is a subset of” on P(A) is

⊆ = { (∅, ∅), (∅, {b}), (∅, {c}), (∅, A), ({b}, {b}), ({b}, A), ({c}, {c}), ({c}, A), (A,A) }

In other words, the sentences ∅ ⊆ {b} and {c} ⊆ A are true, but {b} ⊆ {c} and A ⊆ {b} are false.
A completely artificial example would be S = {1, 2, 3} and R = {(1, 1), (1, 3), (2, 2), (2, 1)}. Here
the statements 1R3 and 2R1 are true, but 2R3 is not true.

But let’s get back to the focus of the section: equivalence relations, i.e., relations which say
that two things in a set have “equal value” from some point of view — not that they are really
identical (although one property will say that if they are identical, then they are equivalent), but
that they can be grouped together and treated as the same under certain circumstances. Here are
the official rules:

Def: A relation R on a set S is an equivalence relation if it satisfies the following conditions:

(R) it is reflexive, i.e., for all s in S, sRs (in other words, every element of S is related to itself
— or, in still other words, the “diagonal” {(s, s) : s ∈ S} is a subset of R);

(S) it is symmetric, i.e., if sRt then also tRs; and

(T) it is transitive, i.e., if sRt and tRu, then also sRu.

Ex: In Z, “has the same remainder on long division by 5” is an equivalence relation. “Has the
same sign as” is an equivalence relation only if we say that the sign of 0 is something (because 0
has to be related to itself) but it can’t be both positive and negative, because then transitivity
would say 1 and −1 have the same sign.

Ex: In geometry, congruence of triangles is an equivalence relation. So is similarity of triangles
(same shape, different sizes). “Has the same area as” would work, too.

There are lots of other examples, but before proceeding, let’s look at the following almost
equivalent ways of thinking about equivalence relations:

Def and Prop: (1) A partition of a set S is a family P of nonempty subsets of S with the property
that every element of S is in exactly one of the sets in P; i.e., for all s in S, there is an A in P for
which s ∈ A, but if A,B ∈ P and A 6= B, then A ∩B = ∅. If P is a partition of S, then “is in the
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same element of P” is an equivalence relation on S.
(1′) Conversely, suppose R is an equivalence relation on S. For each s in S, we set

[s] = {t ∈ S : tRs} .

(If there are more than one equivalence relation under consideration, it may be necessary to add
the symbol R: [s] = [s]R. The text denotes [s] by overbar-s, but I wanted something easier to read
and something that looked more like a set.) It is called the R-equivalence class of s. Then the set
of R-equivalence classes is a partition of S.

(2) If f : S → T be a function on S, then “has the same image under f” is an equivalence
relation on S.

(2′) Conversely, if R is an equivalence relation on S, then the assignment s 7→ [s] is a function
from S to the set of R-equivalence classes.

Pf of whatever is not a definition here: (1) Obviously every element of S is in the same element
of P as itself, so this relation is reflexive. And if s, t are in the same element of P, then t, s are in
the same element of P, so it is symmetric. Transitivity follows from the fact that the elements of
P don’t overlap: If s, t are in the same element of P, and t, u are in the same element of P, then
s, u are in the same element of P.

(1′) None of the R-equivalence classes are empty because of reflexivity: sRs, so s ∈ [s]. And
for the same reason, every element of S is in at least one of R-equivalence classes, namely its own.
Suppose two of the equivalence classes have non-empty intersection, say [s]∩ [t] 6= ∅; then we must
show that [s] = [t]: Take u in that intersection. Then by definition of equivalence class, we have
uRs and uRt. By symmetry we have sRu and then by transitivity we have sRt. Thus, for all w
in [s], we have wRs, hence wRt, hence w ∈ [t]. Therefore, [s] ⊆ [t]. Reversing the roles of s and t
in the last four sentences, we get [t] ⊆ [s] also, so [s] = [t].

This proof shows that a single equivalence class can be written in many different ways, repre-
sented by any element in it: t ∈ [s] iff [t] = [s].

(2) and (2′) These are easy.//

Inspiring example: Instead of thinking of 0, 1, 2, 3, 4 as elements of Z, we could think of them as
representing the “remainder classes on division by 5”:

[3] = {. . . ,−7,−2, 3, 8, 13, . . .}

because −7 = −2(5) + 3, −2 = −1(5) + 3, 3 = 0(5) + 3, 8 = 1(5) + 3, 13 = 2(5) + 3, etc. In this
sense Z5 is the set of remainder classes on division by 5, a partition of Z. And we can think of the
function that sends each integer to its remainder on division by 5, a function from Z to Z5.

The rest of the content of this section is to generalize that last example: Given a subgroup H
of a group G, we will partition G into pieces, each with the same cardinality as H. (We will always
get a function that sends each group element to its set in the partition; but later we will see that
we can’t always make the partition into a group like Z5.) The partition will allow us to get some
nice counting formulas in a finite group.

Prop: Let H be a subgroup of a group G. Then the relation defined by aRb iff ab−1 ∈ H is an
equivalence relation on G, with equivalence classes Ha = {ha : h ∈ H}, the “right cosets of H in
G.” Similarly, a−1b ∈ H is an equivalence relation on G with equivalence classes the “left cosets”
aH.

Pf: We leave it to the reader to prove the last sentence, by mimicry.
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Equivalence relation: Reflexive because aa−1 = e ∈ H for all a in G. Symmetric because if
ab−1 ∈ H, then ba−1 = (ab−1)−1 ∈ H. Transitive because if ab−1 ∈ H and bc−1 ∈ H, then
ac−1 = (ab−1)(bc−1) ∈ H.

Equivalence class as specified: If b ∈ [a], i.e., bRa, i.e., ba−1 ∈ H, then b = (ba−1)a ∈ Ha. If
b ∈ Ha, i.e., b = ha where h ∈ H, then ba−1 = h ∈ H, so bRa, so b ∈ [a]. Therefore, [a] = Ha.//

Note that H is one of its own cosets (left or right); it contains the identity, so naturally enough
He = H. The other cosets are not subgroups — they don’t contain the identity, for example. It
may be useful to think of the cosets of H as “translates” of H within G, just as all the planes in
R3 that are parallel to a given plane P through the origin; P is a vector subspace of R3, and the
other planes parallel to P are not subspaces.

It follows that the right cosets of H in G form a partition of G (and similarly for the left
cosets). Moreover, each right coset has the same cardinality as H itself, because H → Ha : h 7→ ha
is one-to-one and onto. Let’s look at some examples of cosets partitioning some groups:

Ex: The cosets of 5Z in Z (left or right — they are the same because Z is abelian) are

5Z : . . . , −5 , 0 , 5 , 10 , 15 , . . .
5Z + 1 : . . . , −4 , 1 , 6 , 11 , 16 , . . .
5Z + 2 : . . . , −3 , 2 , 7 , 12 , 17 , . . .
5Z + 3 : . . . , −2 , 3 , 8 , 13 , 18 , . . .
5Z + 4 : . . . , −1 , 4 , 9 , 14 , 19 , . . .

Ex: The cosets of 〈3〉 in Z15 are

〈3〉 : 0 , 3 , 6 , 9 , 12
〈3〉 ⊕ 1 : 1 , 4 , 7 , 10 , 13
〈3〉 ⊕ 2 : 2 , 5 , 8 , 11 , 14

Ex: The right cosets of 〈f〉 in D5 are

〈f〉 : e , f , f2 , f3 , f4

〈f〉g : g , fg , f2g , f3g , f4g

while the left cosets of 〈f〉 in D5 are

〈f〉 : e , f , f2 , f3 , f4

g〈f〉 : g , gf = f4g , gf2 = f3g , gf3 = f2g , gf4 = fg

Of course, these are the same sets: One coset (left or right) is 〈f〉 itself and the other coset is the
other half of D5. But the right cosets of 〈g〉 in D5 are

〈g〉 : e , g
〈g〉f : f , gf = f4g
〈g〉f2 : f2 , gf2 = f3g
〈g〉f3 : f3 , gf3 = f2g
〈g〉f4 : f4 , gf4 = fg
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while the left cosets of 〈g〉 in D5 are

〈g〉 : e , g
f〈g〉 : f , fg
f2〈g〉 : f2 , f2g
f3〈g〉 : f3 , f3g
f4〈g〉 : f4 , f4g

Here the right and left cosets are different: f4g ∈ 〈g〉f , but f4g /∈ f〈g〉.

Building R: At this point I would like to take a side trip, to show how the idea of equivalence
relation was used (admittedly, not explicitly, because it wasn’t invented; but the basic ideas were
in there somewhere) to build the real number system. Kronecker (1823-91) said, “God made the
integers; all else is the work of man;” but I think that is misleading. My sense is that God made
humankind in such a way that humans would be compelled to invent the integers for themselves.
In nature one finds lots of examples of three things (three rocks, three sticks, three wildebeests),
but the independent concept of “three” is an abstraction from these examples, and hence a product
of the human mind.

So let’s put ourselves in the mathematical position of a person in, say, the Bronze Age: we
know about the natural numbers

N = {1, 2, 3, . . . }
(in modern notation), and we know all we need to know about adding them and multiplying them:
A pile of 3 rocks combined with a pile of 2 rocks gives the same result as combining piles of 2 and
3; so we know addition is commutative. If we make two rectangles of rocks, both with 7 rocks
in each row, and we end up with the same number of rocks in both rectangles, we know that the
rectangles must both have had the same number of rows; so we know cancellation is possible in
multiplication. But now we start working with sticks, which we can break into pieces; and we’d
like to have new concepts that tell us how much wood we have in broken pieces of sticks. In other
words, we want to invent the positive rationals Q+.

We might just make up new symbols like 2/3 — it wouldn’t be hard to imagine using the
fraction line to “chop” a stick into three pieces and then taking two of them. But then we have the
problem of why does one symbol, 4/6, mean just as much wood as, say, 6/9? Somehow we want
to say that these two symbols have equal “wood value”, in terms of addition and multiplication of
natural numbers. It would be an amazing insight, the discovery of a Bronze Age Newton, to realize
that a 4× 9 rectangle of rocks has the same number as a 6× 6 rectangle; and that if we think of a
pile of 36 rocks as representing a stick, we can “chop” it into 6 equal piles and take four of them,
or into 9 equal piles and take 6 of them; and end up with the same number of rocks. But with this
discovery, we have the basis for deciding when two of these symbols have the same “wood value”:
a/b = c/d when ad = cb. (Again, modern notation generalizing the ancient idea.)

But will this version of “equal wood value” make sense? In the terminology of this section,
because these symbols have numerator and denominator from N, we are asking whether, on the set
N×N, is “(a, b)R(c, d) means ad = cb” defines an equivalence relation. (Maybe the letter R stands
for “ratio.”) If so, a/b can represent the equivalence class of all pairs with this “value.” So, is R
an equivalence relation?

(R) Is it true that, for all (a, b), we have (a, b)R(a, b)? This last relation is just ab = ab, which is
true. So this R is reflexive.

(S) If (a, b)(c, d), must we have (c, d)R(a, b)? The hypothesis means ad = cb, while the conclusion
means cb = ad, so the hypothesis implies the conclusion: R is symmetric.
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(T) If (a, b)(c, d) and (c, d)(e, f), must we have (a, b)(e, f)? The hypothesis means ad = cb and
cf = ed, while the conclusion means ae = fb. This is harder: We can multiply the first two
equations to get adcf = cbed, we noted earlier that we have cancellation of multiplication, so
we can cancel c and d on both sides and get the conclusion. (We also used commutativity of
multiplication, but that is pretty clear from rectangles of rocks.) So R is transitive.

So we have succeeded in building all the ratios of natural numbers, as R-equivalence classes;
i.e., we have built Q+. But we want it to be more than just a set of symbols; we want to be able to
add and multiply them, too, as if they really were numbers. It must have taken a couple of millenia
to find the formulas for operating with these symbols, but we don’t have to wait:

a

b
+
c

d
=
ad+ cb

bd
and

a

b
· c
d

=
ac

bd
.

Now, however, we do have a problem, which arises any time there are different ways to write an
element of the domain of a function: Are these operations “well-defined”, in the sense that, if we
write the operands in a different way, do we get the same result? After all, the formula is in terms
of a, b, c, d. If we change a/b to the equal fraction a′/b′ and/or similarly for c/d, will the new answer
be the same as the old? If we were to try to define addition of fractions the “easy way”,

a

b
+
c

d
=
a+ c

b+ d
,

then, even through 1/2 = 2/4, we have

1

2
+

1

3
=

2

5
, but

2

4
+

1

3
=

3

7
6= 2

5
.

So let’s check that the real addition formula about is well-defined: Suppose a/b = a′/b′ and
c/d = c′/d′; we want to show that (ad + cb)/bd = (a′d′ + c′b′)/b′d′. Now the hypothesis means
ab′ = a′b and cd′ = c′d, and we need to show that (ad + cb)b′d′ = (a′d′ + c′b′)bd. But this last
equation is just

adb′d′ + cbb′d′ = a′d′bd+ c′b′bd ,

and using the hypothesis (and commutativity of multiplication in N again), we can get that the
left side of the displayed equation is equal to the right:

adb′d′ + cbb′d′ = (ab′)(dd′) + (cd′)(bb′)

= (a′b)(dd′) + (c′d)(bb′)

= a′d′bd+ c′b′bd .

Checking that multiplication is also well-defined is a little easier.
So a few millenia later, positive rational numbers have become routine, and there is a vague

sense of the number 0. But negative numbers are still “imaginary” things, and some questions have
no answers: What, added to 5, gives 3? So how can we build Q from Q+? The answer is again, Q
is the set of equivalence classes carved out of Q+ × Q+ by an equivalence relation. This time the
relation is D, (maybe for “difference”): We want two ordered pairs (a, b), (c, d) to be related if they
represent the same difference, positive or negative: a− b = c− d, or equivalently, a+ d = c+ b. It
is left to the reader to show that this is an equivalence relation on Q+ ×Q+. So now we can say

• the difference a− b is the equivalence class containing (a, b) — so now every difference makes
sense, whether a > b or a < b;
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• 0 (which was sort of a shadowy nonentity so far) is the equivalence class containing all the
(a, a)’s; and

• −a is the equivalence class containing (1, a+ 1), or equivalently (b, a+ b) for any b.

There is more to do, of course, like defining the operations on these new “numbers”; but now we
have all of Q.

The big jump, from rationals to reals, was actually taken before the jump from positives to
negatives. Eudoxus explained how to construct the positive reals R+ from the positive rationals
Q+, long enough ago that Euclid could include it in the Elements in about 300 BCE. And two
millenia later, Dedekind copied the process to build R from Q. The idea really fits better in
Math 323, but here is a sketch: A “Cauchy sequence” of rational numbers is an infinite list of
numbers (an) = (a1, a2, a3, . . . ) in which the an’s are getting close to each other as n gets larger —
trying to converge to a real number, which may or may not be there. Here’s an example:

1 1.4 1.41 1.414 1.4142 . . .

all rational, but “trying to get close to”
√

2. On the set of all rational Cauchy sequences, we define
the relation L (maybe for “limit”) by (an)L(bn) if the an’s are getting closer to the bn’s as n get’s
larger — i.e., if they have the same limit. The L-equivalence classes of rational Cauchy sequences
are the real numbers.

Interlude: “Is conjugate to” in two contexts
Recall that, for elements x, y of a group G, we say that y is “conjugate” to x (in G) if there is

an element g of G for which gxg−1 = y. Notice that “is conjugate to” is an equivalence relation
on G. (Proof: Every element is the conjugate of itself by the identity. If y is conjugate to x by g,
then x is conjugate to y by g−1. If y is conjugate to x by g and z is conjugate to y by h, then z
is conjugate to x by hg.) This may seem like a rather formal and abstract way for group elements
to be related. We want to note here how, in two specific groups, “is conjugate to” has a natural
meaning.

First, in any of the groups Sn, for any r-cycle (t1, t2, . . . , tr) (where the ti’s are, of course,
elements of {1, 2, . . . , n}), and any element ϕ of Sn, we have, for each x ∈ {1, 2, . . . , n}:

(ϕ ◦ ((t1, t2, . . . , tr) ◦ ϕ−1)(x) = ϕ((t1, t2, . . . , tr)(ϕ
−1(x))

=

{
ϕ((t1, t2, . . . , tr)(tj)) if x = ϕ(tj)

ϕ(ϕ−1(x)) if x 6= ϕ(tj) ∀ j = 1, . . . r

}
=

{
ϕ(tj+1 or t1 if j = r)) if x = ϕ(tj)

x if x 6= ϕ(tj) ∀ j = 1, . . . r

}
= (ϕ(t1), ϕ(t2), . . . , ϕ(tr))(x) ,

i.e., ϕ◦ ((t1, t2, . . . , tr)◦ϕ−1 = (ϕ(t1), ϕ(t2), . . . , ϕ(tr)). Thus, the conjugate of an r-cycle is another
r-cycle. Moreover, if two cycles are disjoint, then their conjugates by ϕ are also disjoint, because
ϕ is 1-1. Therefore, if ψ in Sn has disjoint cycle decomposition

ψ = γ1γ2 . . . γm ,

then
ϕψϕ−1 = (ϕγ1ϕ

−1)(ϕγ2ϕ
−1) . . . (ϕγmϕ

−1) ;

the last expression is the disjoint cycle decomposition of the conjugate ϕψϕ−1 of ψ, and it has the
same number of 2-cycles, the same number of 3-cycles, the same number of 4-cycles, and so on
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as does the disjoint cycle decomposition of ψ. So if two elements of Sn are conjugate, then their
disjoint cycle decompositions have the same “form”, i.e., the same number of cycles of each length.

We claim that the converse is also true: If two elements ψ and ρ are such that their disjoint
cycle decompositions have the same number of cycles of each length, then we can find a ϕ for which
ρ = ϕ ◦ ψ ◦ ϕ−1. This is probably easier to see with an example rather than trying to write it out
in symbols: In S10, take

ψ = (1, 2, 3)(6, 8, 10)(4, 9) and ρ = (3, 1, 5)(7, 2, 4)(9, 10) ,

two elements of the same “form”, in the sense above. One choice for ϕ would be

ϕ =

(
1 2 3 4 5 6 7 8 9 10
3 1 5 9 ? 7 ? 2 10 4

)
,

where the two question marks are 6 and 8 in either order. But because we could also write the
same ρ in a different way:

ρ = (1, 5, 3)(2, 4, 7)(10, 9) ,

another choice for ϕ would be

ϕ =

(
1 2 3 4 5 6 7 8 9 10
1 5 3 10 ? 2 ? 4 9 7

)
,

where the question marks are 6 and 8 in either order. At any rate, we have shown that two elements
of Sn are conjugate (in Sn) if and only if their disjoint cycle decompositions have the same number
of cycles of each length.

The other context in which we can give a different interpretation of conjugacy is in GL(n,R); but
for this one we need to recall almost all of our linear algebra course, just to get the notation straight.
Recall that, given an m-dimensional (real) vector space V and an ordered basis B = {~v1, . . . , ~vm}
of V , we get a simple function from [·]B : V → Rn, given by, if ~v in V is written in terms of B as

~v = b1~v1 + · · ·+ bm~vm ,

then the coordinate vector of ~v with respect to B is

[~v]B =

 b1
...
bm

 .

Also, if W is an n-dimensional vector space with ordered basis C = {~w1, . . . , ~wn}, and if T : W → V
is a linear transformation, then we write the images under T of the elements of C in terms of B:

T (~w1) = t1,1~v1 + · · ·+ tm,1~vm
...

...
. . .

...

T (~wn) = t1,n~v1 + · · ·+ tm,n~vm

Now we can isolate the coefficients ti,j in these equations, make a matrix out of them, and get the
matrix representation of T with respect to the bases C and B:

[T ]CB =

 t1,1 . . . t1,n
...

. . .
...

tm,1 . . . tm,n

 = [ [T (~w1)]B . . . [T (~wn)]B ] .
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The reason for doing this is that it converts the abstract linear transformation T into matrix
multiplication: If we want the coordinate vector with respect to B of the image under T of any
vector ~w in W , we first find the coordinate vector of ~w with respect to C and multiply it by the
matrix representation of T : If

~w = c1 ~w1 + · · ·+ cn ~wn ,

so that

[~w]C =

 c1
...
cn

 ,

then

T (~w) = c1T (~w1) + · · ·+ cnT (~wn)

= c1(t1,1~v1 + · · ·+ tm,1~vm) + · · ·+ cn(t1,n~v1 + · · ·+ tm,n~vm)

= (c1t1,1 + · · ·+ cnt1,n)~v1 + · · ·+ (c1tm,1 + · · ·+ cntm,n)~vm

=

 n∑
j=1

t1,jcj

~v1 + · · ·+

 n∑
j=1

tm,jcj

~vm ,

so that we have

[T (~w)]B =


∑n

j=1 t1,jcj
...∑n

j=1 tm,jcj

 =

 t1,1 . . . t1,n
...

. . .
...

tm,1 . . . tm,n


 c1

...
cn

 = [T ]CB[~w]C .

The ends of that last equation give the equation we are shooting for. Notice that what it says is
that we can “cancel” the basis C from “top” and “bottom” (which is why I chose this notation).
Moreover, if U is still another vector space, with ordered basis A, and if S : U → W is a linear
transformation, then for every ~u in U we have

[TS]AB[~u]A = [TS(~u)]B = [T ]CB[S(~u)]C = [T ]CB[S]AC [~u]A ,

so [TS]AB = [T ]CB[S]AC ; i.e., the “cancellation of bases” stuff works on matrices as a whole, and not
just on one matrix and and one (coordinate) vector.

One last point before we leave the context of abstract vector spaces: Suppose n = m and
V = W , so that C and B are two bases for the same vector space. Then to get from the coordinate
vector with respect to C of some element ~v of V to the coordinate vector of that ~v with respect
to B, we can apply the equation above with the identity function id on V — which is a linear
transformation from V to itself:

[~v]B = [id(~v)]B = [id]CB[~v]C .

So [id]CB is the transition matrix from (the coordinate vectors with respect to) C to (the ones with
respect to) B. (Notice that the columns of [id]CB are just the coordinate vectors of the elements of
C with respect to B.) Because we have

[id]CB[id]BC = [id]BB = I (the identity matrix) and [id]BC [id]CB = I ,

these transition matrices are inverses of each other.
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So what has all this got to do with conjugation in GL(n,R)? Well, suppose we restrict to n = m
and V = W = Rn. Then for any n×n matrix M , multiplication by M gives a linear transformation
T : Rn → Rn, and M is the matrix representation of T with respect to the standard basis

B =




1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


 .

Now take any element P of GL(n,R), i.e., an invertible n×n matrix. Then the columns of P form
a basis C for Rn, and those columns are the coordinate vectors of themselves with respect to the
standard basis B; so P = [id]CB. Thus, P−1 = [id]BC , and we have

P−1MP = [id]BC [T ]BB[id]CB = [T ]CC .

In other words, a conjugate of M is just the matrix representation of multiplication by M , regarded
as a linear transformation on Rn, but with respect to a possibly different basis. (This works even
if M isn’t invertible, i.e., if M /∈ GL(n,R).)
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