Section 10: Counting the Elements of a Finite Group

Let G be a group and H a subgroup. Because the right cosets are the family of equivalence
classes with respect to an equivalence relation on G, it follows that the right cosets of H in G form
a partition of G (and similarly for the left cosets). Each right coset has the same cardinality as
H itself, because H — Ha : h — ha is one-to-one and onto. Moreover (and this is almost the
only time that we will use both the left and right cosets at the same time), there is a one-to-one
correspondence from the set of right cosets to the set of left cosets, given by Ha + a 1H. (It is
necessary to throw in the inverse here to make the correspondence well-defined: If Ha = Hb, then
we may have aH # bH, but because ab~! € H, we also have (b~!)"ta=! =ba~! = (ab~!)"! € H,
and hence a ' H = b~ 'H. For an example of this, see the last example in the notes for Section 9:
We have (g)f = (9)f*g, flg) # f1g(g) and f~H{g) = f*g) = f'g9(9) = (f'9)""(g).) Thus the
cardinalities of the sets of right cosets and left cosets are equal. We denote this common cardinality
by [G : H| and call it the index of H in G. If G is a finite group, then this index is surely finite; if
G is infinite, then it could be finite or infinite. ([Z : 5Z] = 5; [Q : Z] is infinite.)

Suppose now that G is a finite group, with a subgroup H. Then [G : H] is also finite, say n,
and, picking one element a;, ¢ = 1,2,...,n, from each of the right cosets of H in G, we get

|G| = |Hay| + |Haz| + -+ - + |Hay| = n|H| .

(A set like {a1,as,...,a,}, one from each coset, is called a “set of coset representatives” of H; such
a set doesn’t have much structure — it’s usually just a convenient way to list the cosets of H.)
We’ve proved a useful and important theorem:

Lagrange’s Thm: Let H be a subgroup of a finite group G. Then |G| = |H||G : H|. In particular,
the order of any subgroup or element of G divides the order of G.

Ex: For any cyclic group (z) with order n and any divisor d of n, there is exactly one subgroup
(x4} of order d.

Ex: Qg has one subgroup of order 1 ((I)), one of order 2 ((—1I)), three of order 4 ({J), (K), and
(L)), and one of order 8 (Qg itself).

Ex: S, has order n!, and it has elements of orders 1 through n, namely 1-cycles, 2-cycles, and so
on up to n-cycles. It also has subgroups of 2n, namely D,,, and n!/2, namely A,.

A fair question is: If d is a factor of |G|, must there be at least one subgroup of order d? It
turns out there is such a subgroup if d is a power of a prime number; but for a general d there may
not be a subgroup. In particular, we’ll see that A4, which has 4!/2 = 12 elements, has no subgroup
of 6 elements.

Cor: If a group has order a prime number, then the group is cyclic, generated by any non-identity
element of the group.

Pf: Let G be a group for which |G| = p, a prime number, and let ¢ € G — {e}. Then (g) is a
nontrivial subgroup of G, and its order divides |G| = p, so its order is p, so (g) = G.//

Here is a general result, also a corollary of Lagrange’s theorem, that yields as a corollary a
result named for Euler, which in turn yields as a corollary a result named for Fermat. The proofs,
as befits corollaries, are very short: First, the order of every element in a finite group divides the



order of the group. Second, the set of elements of Z, that are relatively prime to n form a group
under multiplication mod n; the number of such elements, i.e., the order of this group, is denoted
by ¢(n) and called the “Euler phi-function” of n. Third, if n is a prime p, then the only element
of Z,, that is not relatively prime to p is 0, so ¢(p) = p — 1. And recall that “a = b mod n” means
that the integers a, b have the same remainder on long division by the positive integer n; i.e., that
a, b represent the same element of Z,.

Cor: If G is a finite group, then for every z in G, /€l = e.
Euler’s Thm: If k is an integer relatively prime to the positive integer n, then k%™ =1 mod n.
Fermat’s Thm: If k is an integer not divisible by the prime p, then kP~ =1 mod p.

So, for example, for every element f of S, f™ = e; and because ¢(6) = 2, 192 =1 mod 6; and
255 =1 mod 7.

Another handy equation for establishing facts about a finite group is called the class equation
of the group. Again, it will follow quickly once we have set up the “machinery” that goes into it.
We begin with a fact that may have already suggested itself to you. Recall that we say an element
g of a group G is called conjugate (in G) to another element h if there is an element x of G for
which zgz~! = h. The proof of the following result is a good exercise.

Lemma: “Is conjugate (in G) to” is an equivalence relation on G.

Hence, G is partitioned into “conjugacy classes”, each consisting of the elements that are con-
jugate to each other. Unlike cosets, these conjugacy classes need not have the same number of
elements; but at least there is a way to write down how many elements there are in a given con-
jugacy class. Recall that, if g is an element of a group G, then the set of elements x of G that
commute with g, i.e., for which zg = gz, forms a subgroup Z(g) called the centralizer of g.

Lemma: Two elements x,y of G have the property that xgz~! = ygy~! iff 2,y are in the same

left coset of Z(G) in G. Hence, the number of elements in the conjugacy class of g is equal to the
index [G : Z(g)] (and hence, if G is finite, it divides |G|).
Pf: The first sentence just uses the definition of left coset:

zgrt=ygy™t & ylag=gyle & ylzelly) & aZlg) =yZlg).

The second sentence follows immediately, because all the elements of a given left coset of Z(g)
conjugate g to the same element of G, and different cosets correspond to different conjugates of

g-//

Now to say that an element g of G has only one conjugate (which must be itself) is to say that
G commutes with every element of G, i.e., that g € Z(G), the center of G. Thus, Z(G) is the union
of all the one-element conjugacy classes in G.

Class Equation: Let G be a finite group, and take one element g1, go, ..., gs out of each of the
conjugacy classes of G that have at least two elements. Then

Gl =12(G)| +)_[G: Z(g:)] -
i=1



Pf: Because the conjugacy classes partition G, we know that the order of G is the sum of the
cardinalities of all of the conjugacy classes. If we group together the one-element conjugacy classes
into Z(G), each of the remaining conjugacy classes has at least two elements, and we have chosen
one of these elements to be g;, say. And we have seen above that the cardinality of the conjugacy
class containing g; is the index of Z(g;) in G.//

It is useful to note that we have specifically arranged in this equation that none of the indices
[G: Z(g;)] is a 1. Let us look at one example, and then prove a result using this equation.

Ex: In Dg, the only elements that commute with every element are e, f3, so they constitute Z(Dg).
Now gfg~t = gfg = f5gg9 = f°, so f, f° are in the same conjugacy class. Now Z(f) contains f
itself and hence all of (f) (including (f3) = Z(Dg)), but it is not all of Dg, so |Z(f)] is divisible
by |(f)| = 6 and properly divides |Dg| = 12, i.e., it is 6; and so the cardinality of the conjugacy
class containing f is [Dg : Z(f)] = 12/6 = 2; i.e., this class is {f, f°}. Similarly, {f2, f} is another
conjugacy class. And Z(g) contains Z(Dg) and g and is not all of Dg, so its order, a proper
divisor of 12 divisible by |{e, 3,9, f3g}| = 4, is 4; and hence the number of conjugates of g is
[Dg : Z(g)] = 12/4 = 3. We have fgf~' = f%g and f2gf~2 = f%g, so that the conjugacy class
of g is {g, f?9, f*g}. And the remaining conjugacy class is {fg, 39, f°g}. We have sorted all the
elements into their conjugacy classes, and one set of representatives of the conjugacy classes that
have more than one element is {f, f2, g, fg}:

Dg = {e,fg}U{f7f5}U{fQ,f4}U{g,f2g,f4g}U{fg,f3g,f5g}
[Ds| = [Z(Dg)| + [Da: Z(f))+[Ds : Z(f*)] + [Ds : Z(9)] + [De : Z(f9)]
12 = 2424+2+3+3.

That last equation was not very interesting, so it may be hard to see what good the class
equation does. Here’s one use of it in proving a useful fact:

Prop: If |G| is a power of a prime number, then Z(G) is not trivial. If |G| is the square of a prime
number, then G is abelian.

Pf: Suppose first that |G| = p™ where p is a prime. Then both |G| and all of the [G : Z(g;] in the
class equation are powers of p, the only divisors of p”, and none of the factors [G : Z(g;)] are 1, so
they are all divisible by p. Thus, the only remaining term in the class equation, |Z(G)|, must be
divisible by p also, so Z(G) cannot be trivial.

Now suppose that |G| = p?. We have just shown that Z(G) has either p or p? elements, and
we want to prove it must be p%. So assume not, by way of contradiction, and take an element ¢ in
G — Z(G). Then Z(g) contains at least Z(G) and g; so it has more than p elements, and hence it
has p? elements. But that means g commutes with every element of G, i.e., g € Z(G), contradicting
our choice of g and completing the proof.//

Thus, with a little more work, we can show that the only essentially different groups of order
(cardinality) a square of a prime p are Z,> and Z;, X Zj.

Lemma: If (k1,ko,...,kr) is an r-cycle in S,, and ¢ € S,,, then
po (ki ke, k) oo™t = (p(k1), p(ka), . yo(kr)) . (%)

another r-cycle. Thus, if two elements of S,, are conjugate in a subgroup of S, then their disjoint
cycle decompositions have the same numbers of r-cycles for each positive integer r. The converse



is true in S,, (but it may not be true in a subgroup, because the ¢ that is necessary to conjugate
one element into another with a “matching” disjoint cycle decomposition may not exist in the
subgroup).

Pf: We show that both sides of (x) have the same effect on an element j of {1,2,...,n}, considering
two cases: where j is one of the p(k;)’s, i = 1,...,r, and where j is not one of the ¢(k;)’s. If
j = @(k;), then clearly the right side of (x) takes it to ¢(k;y1); while the left side takes it, first to
k;, then to k;11 [or to kq, if i = r — we won’t bother to mention this case again], then to ¢ (k;11);
so the results are the same in this case. If j is not one of the ¢(k;)’s, then the right side of the
equation takes it to itself; while the left side takes it first to ¢ ~'(j) — which is not one of the k;’s,
because ¢! is one-to-one — then to ¢~ 1(j) again (because it is not one of the k;’s, so the r-cycle
doesn’t move it), then to p(p~1(j)) = j; so the results are also the same in this case. Equation (x)
follows.

Thus, if an element « of S, can be written as o = 172 ... vs where the 7;’s are disjoint cycles,

then

1

pap ™t = (e D(ere ™) ... (prse™t)

and by equation (x) each of the (¢v;071)’s is a cycle of the same length as the corresponding ;;
and the (oy1901)’s are still disjoint because ¢ is one-to-one.

For the converse in the context of S,,, suppose we have two elements «, 8 for which the disjoint
cycle decompositions have the same number of cycles of each length. Then if we arrange the cycles
in both factorizations so that, say, the 1-cycles come first, the 2-cycles next, the 3-cycles next, and
so on, and then let ¢ be the function that assigns the first entry that appears in « to the first in
f3, the second in « to the second in 3, and so on, then we will have pap™t = 3.//

To see by example how the construction of the necessary ¢ in the last paragraph would work,
let us take a = (1,2)(3,4,5) = (6)(7)(1,2)(3,4,5) and 8 = (4)(6)(3,1)(2,5,7) in S7. If we set

(1 2 3 4567
P=\3125746)"
then we have pap™ = . But we can write « and S in many different ways, even without disturbing

the setup where the 1-cycles come first, the 2-cycles next, etc. If we rewrite 5 as (6)(4)(1,3)(5,7,2),
then the method above gives a new ¢, namely

(1 2 3 45 6 7
P=\1 35726 4)"
and we still have pap~! = 3. (Apparently the old ¢ and the new one are in the same left coset of
the centralizer of «.) So the ¢ is not unique, and we may be able to pick one that has some other

property, e.g., one that is in some subgroup G of S, that also contains «, 3, so that «, 8 are also
conjugate in G.

1

Ex: It is left to the students of combinatorics in the class to see that, in Sy, the cardinalities of
the conjugacy classes are as follows:

e the cardinality of the single-element class {e} is 1;
e the 2-cycles form a conjugacy class of (5-4)/2 = 10 elements;

e the 3-cycles form a conjugacy class of (5-4-3)/3 = 20 elements;



e the 4-cycles form a conjugacy class of (5-4-3-2)/4 = 30 elements;
e the 5-cycles form a conjugacy class of 5!/5 = 24 elements;

e the products of two disjoint 2-cycles form a conjugacy class of (5-4-3-2)/(2-2-2) =15
elements;

e the products of a 3-cycle and a 2-cycle which are disjoint form a conjugacy class of 5!/(3-2) =
20 elements;

so the class equation for Ss is

1200=1+10+20+30+24+15+20 .



