Section 10: Counting the Elements of a Finite Group

Let G be a group and H a subgroup. Because the right cosets are the family of equivalence classes with respect to an equivalence relation on G, it follows that the right cosets of H in G form a partition of G (and similarly for the left cosets). Each right coset has the same cardinality as H itself, because $H \to Ha : h \mapsto ha$ is one-to-one and onto. Moreover (and this is almost the only time that we will use both the left and right cosets at the same time), there is a one-to-one correspondence from the set of right cosets to the set of left cosets, given by $Ha \mapsto a^{-1}H$. (It is necessary to throw in the inverse here to make the correspondence well-defined: If Ha = Hb, then we may have $aH \neq bH$, but because $ab^{-1} \in H$, we also have $(b^{-1})^{-1}a^{-1} = ba^{-1} = (ab^{-1})^{-1} \in H$, and hence $a^{-1}H = b^{-1}H$. For an example of this, see the last example in the notes for Section 9: We have $\langle g \rangle f = \langle g \rangle f^4g$, $f\langle g \rangle \neq f^4g \langle g \rangle$ and $f^{-1} \langle g \rangle = f^4 \langle g \rangle = f^4g \langle g \rangle = (f^4g)^{-1} \langle g \rangle$.) Thus the cardinalities of the sets of right cosets and left cosets are equal. We denote this common cardinality by [G:H] and call it the *index of H in G*. If G is a finite group, then this index is surely finite; if G is infinite, then it could be finite or infinite. ($[\mathbb{Z}: 5\mathbb{Z}] = 5$; $[\mathbb{Q}:\mathbb{Z}]$ is infinite.)

Suppose now that G is a finite group, with a subgroup H. Then [G : H] is also finite, say n, and, picking one element $a_i, i = 1, 2, ..., n$, from each of the right cosets of H in G, we get

$$|G| = |Ha_1| + |Ha_2| + \dots + |Ha_n| = n|H|$$
.

(A set like $\{a_1, a_2, \ldots, a_n\}$, one from each coset, is called a "set of coset representatives" of H; such a set doesn't have much structure — it's usually just a convenient way to list the cosets of H.) We've proved a useful and important theorem:

Lagrange's Thm: Let H be a subgroup of a finite group G. Then |G| = |H|[G:H]. In particular, the order of any subgroup or element of G divides the order of G.

Ex: For any cyclic group $\langle x \rangle$ with order *n* and any divisor *d* of *n*, there is exactly one subgroup $\langle x^{n/d} \rangle$ of order *d*.

Ex: Q_8 has one subgroup of order 1 ($\langle I \rangle$), one of order 2 ($\langle -I \rangle$), three of order 4 ($\langle J \rangle$, $\langle K \rangle$, and $\langle L \rangle$), and one of order 8 (Q_8 itself).

Ex: S_n has order n!, and it has elements of orders 1 through n, namely 1-cycles, 2-cycles, and so on up to *n*-cycles. It also has subgroups of 2n, namely D_n , and n!/2, namely \mathcal{A}_n .

A fair question is: If d is a factor of |G|, must there be at least one subgroup of order d? It turns out there is such a subgroup if d is a power of a prime number; but for a general d there may not be a subgroup. In particular, we'll see that A_4 , which has 4!/2 = 12 elements, has no subgroup of 6 elements.

Cor: If a group has order a prime number, then the group is cyclic, generated by any non-identity element of the group.

Pf: Let G be a group for which |G| = p, a prime number, and let $g \in G - \{e\}$. Then $\langle g \rangle$ is a nontrivial subgroup of G, and its order divides |G| = p, so its order is p, so $\langle g \rangle = G_{-}//2$

Here is a general result, also a corollary of Lagrange's theorem, that yields as a corollary a result named for Euler, which in turn yields as a corollary a result named for Fermat. The proofs, as befits corollaries, are very short: First, the order of every element in a finite group divides the

order of the group. Second, the set of elements of \mathbb{Z}_n that are relatively prime to n form a group under multiplication mod n; the number of such elements, i.e., the order of this group, is denoted by $\varphi(n)$ and called the "Euler phi-function" of n. Third, if n is a prime p, then the only element of \mathbb{Z}_p that is not relatively prime to p is 0, so $\varphi(p) = p - 1$. And recall that " $a \equiv b \mod n$ " means that the integers a, b have the same remainder on long division by the positive integer n; i.e., that a, b represent the same element of \mathbb{Z}_n .

Cor: If G is a finite group, then for every x in G, $x^{|G|} = e$.

Euler's Thm: If k is an integer relatively prime to the positive integer n, then $k^{\varphi(n)} \equiv 1 \mod n$.

Fermat's Thm: If k is an integer not divisible by the prime p, then $k^{p-1} \equiv 1 \mod p$.

So, for example, for every element f of S_n , $f^{n!} = e$; and because $\varphi(6) = 2$, $19^2 \equiv 1 \mod 6$; and $25^6 \equiv 1 \mod 7$.

Another handy equation for establishing facts about a finite group is called the class equation of the group. Again, it will follow quickly once we have set up the "machinery" that goes into it. We begin with a fact that may have already suggested itself to you. Recall that we say an element g of a group G is called conjugate (in G) to another element h if there is an element x of G for which $xgx^{-1} = h$. The proof of the following result is a good exercise.

Lemma: "Is conjugate (in G) to" is an equivalence relation on G.

Hence, G is partitioned into "conjugacy classes", each consisting of the elements that are conjugate to each other. Unlike cosets, these conjugacy classes need not have the same number of elements; but at least there is a way to write down how many elements there are in a given conjugacy class. Recall that, if g is an element of a group G, then the set of elements x of G that commute with g, i.e., for which xg = gx, forms a subgroup Z(g) called the centralizer of g.

Lemma: Two elements x, y of G have the property that $xgx^{-1} = ygy^{-1}$ iff x, y are in the same left coset of Z(G) in G. Hence, the number of elements in the conjugacy class of g is equal to the index [G : Z(g)] (and hence, if G is finite, it divides |G|).

Pf: The first sentence just uses the definition of left coset:

$$xgx^{-1} = ygy^{-1} \qquad \Leftrightarrow \qquad y^{-1}xg = gy^{-1}x \qquad \Leftrightarrow \qquad y^{-1}x \in Z(g) \qquad \Leftrightarrow \qquad xZ(g) = yZ(g) \;.$$

The second sentence follows immediately, because all the elements of a given left coset of Z(g) conjugate g to the same element of G, and different cosets correspond to different conjugates of g.//

Now to say that an element g of G has only one conjugate (which must be itself) is to say that G commutes with every element of G, i.e., that $g \in Z(G)$, the center of G. Thus, Z(G) is the union of all the one-element conjugacy classes in G.

Class Equation: Let G be a finite group, and take one element g_1, g_2, \ldots, g_s out of each of the conjugacy classes of G that have at least two elements. Then

$$|G| = |Z(G)| + \sum_{i=1}^{s} [G : Z(g_i)].$$

Pf: Because the conjugacy classes partition G, we know that the order of G is the sum of the cardinalities of all of the conjugacy classes. If we group together the one-element conjugacy classes into Z(G), each of the remaining conjugacy classes has at least two elements, and we have chosen one of these elements to be g_i , say. And we have seen above that the cardinality of the conjugacy class containing g_i is the index of $Z(g_i)$ in G.//

It is useful to note that we have specifically arranged in this equation that none of the indices $[G: Z(g_i)]$ is a 1. Let us look at one example, and then prove a result using this equation.

Ex: In D_6 , the only elements that commute with every element are e, f^3 , so they constitute $Z(D_6)$. Now $gfg^{-1} = gfg = f^5gg = f^5$, so f, f^5 are in the same conjugacy class. Now Z(f) contains f itself and hence all of $\langle f \rangle$ (including $\langle f^3 \rangle = Z(D_6)$), but it is not all of D_6 , so |Z(f)| is divisible by $|\langle f \rangle| = 6$ and properly divides $|D_6| = 12$, i.e., it is 6; and so the cardinality of the conjugacy class containing f is $[D_6: Z(f)] = 12/6 = 2$; i.e., this class is $\{f, f^5\}$. Similarly, $\{f^2, f^4\}$ is another conjugacy class. And Z(g) contains $Z(D_6)$ and g and is not all of D_6 , so its order, a proper divisor of 12 divisible by $|\{e, f^3, g, f^3g\}| = 4$, is 4; and hence the number of conjugacy class of g is $[D_6: Z(g)] = 12/4 = 3$. We have $fgf^{-1} = f^2g$ and $f^2gf^{-2} = f^4g$, so that the conjugacy class of g is $\{g, f^2g, f^4g\}$. And the remaining conjugacy class is $\{fg, f^3g, f^5g\}$. We have sorted all the elements into their conjugacy classes, and one set of representatives of the conjugacy classes that have more than one element is $\{f, f^2, g, fg\}$:

$$D_6 = \{e, f^3\} \cup \{f, f^5\} \cup \{f^2, f^4\} \cup \{g, f^2g, f^4g\} \cup \{fg, f^3g, f^5g\}$$
$$|D_6| = |Z(D_6)| + [D_4 : Z(f)] + [D_5 : Z(f^2)] + [D_5 : Z(g)] + [D_6 : Z(fg)]$$
$$12 = 2 + 2 + 2 + 3 + 3.$$

That last equation was not very interesting, so it may be hard to see what good the class equation does. Here's one use of it in proving a useful fact:

Prop: If |G| is a power of a prime number, then Z(G) is not trivial. If |G| is the square of a prime number, then G is abelian.

Pf: Suppose first that $|G| = p^n$ where p is a prime. Then both |G| and all of the $[G : Z(g_i]$ in the class equation are powers of p, the only divisors of p^n , and none of the factors $[G : Z(g_i)]$ are 1, so they are all divisible by p. Thus, the only remaining term in the class equation, |Z(G)|, must be divisible by p also, so Z(G) cannot be trivial.

Now suppose that $|G| = p^2$. We have just shown that Z(G) has either p or p^2 elements, and we want to prove it must be p^2 . So assume not, by way of contradiction, and take an element g in G - Z(G). Then Z(g) contains at least Z(G) and g; so it has more than p elements, and hence it has p^2 elements. But that means g commutes with every element of G, i.e., $g \in Z(G)$, contradicting our choice of g and completing the proof.//

Thus, with a little more work, we can show that the only essentially different groups of order (cardinality) a square of a prime p are \mathbb{Z}_{p^2} and $\mathbb{Z}_p \times \mathbb{Z}_p$.

Lemma: If (k_1, k_2, \ldots, k_r) is an *r*-cycle in S_n and $\varphi \in S_n$, then

 $\varphi \circ (k_1, k_2, \dots, k_r) \circ \varphi^{-1} = (\varphi(k_1), \varphi(k_2), \dots, \varphi(k_r)) , \qquad (*)$

another r-cycle. Thus, if two elements of S_n are conjugate in a subgroup of S_n , then their disjoint cycle decompositions have the same numbers of r-cycles for each positive integer r. The converse

is true in S_n (but it may not be true in a subgroup, because the φ that is necessary to conjugate one element into another with a "matching" disjoint cycle decomposition may not exist in the subgroup).

Pf: We show that both sides of (*) have the same effect on an element j of $\{1, 2, ..., n\}$, considering two cases: where j is one of the $\varphi(k_i)$'s, i = 1, ..., r, and where j is not one of the $\varphi(k_i)$'s. If $j = \varphi(k_i)$, then clearly the right side of (*) takes it to $\varphi(k_{i+1})$; while the left side takes it, first to k_i , then to k_{i+1} [or to k_1 , if i = r — we won't bother to mention this case again], then to $\varphi(k_{i+1})$; so the results are the same in this case. If j is not one of the $\varphi(k_i)$'s, then the right side of the equation takes it to itself; while the left side takes it first to $\varphi^{-1}(j)$ — which is not one of the k_i 's, because φ^{-1} is one-to-one — then to $\varphi^{-1}(j)$ again (because it is not one of the k_i 's, so the r-cycle doesn't move it), then to $\varphi(\varphi^{-1}(j)) = j$; so the results are also the same in this case. Equation (*) follows.

Thus, if an element α of S_n can be written as $\alpha = \gamma_1 \gamma_2 \dots \gamma_s$ where the γ_i 's are disjoint cycles, then

$$\varphi \alpha \varphi^{-1} = (\varphi \gamma_1 \varphi^{-1})(\varphi \gamma_2 \varphi^{-1}) \dots (\varphi \gamma_s \varphi^{-1}) ,$$

and by equation (*) each of the $(\varphi \gamma_i \varphi^{-1})$'s is a cycle of the same length as the corresponding γ_i ; and the $(\varphi \gamma_1 \varphi^{-1})$'s are still disjoint because φ is one-to-one.

For the converse in the context of S_n , suppose we have two elements α, β for which the disjoint cycle decompositions have the same number of cycles of each length. Then if we arrange the cycles in both factorizations so that, say, the 1-cycles come first, the 2-cycles next, the 3-cycles next, and so on, and then let φ be the function that assigns the first entry that appears in α to the first in β , the second in α to the second in β , and so on, then we will have $\varphi \alpha \varphi^{-1} = \beta . / /$

To see by example how the construction of the necessary φ in the last paragraph would work, let us take $\alpha = (1,2)(3,4,5) = (6)(7)(1,2)(3,4,5)$ and $\beta = (4)(6)(3,1)(2,5,7)$ in \mathcal{S}_7 . If we set

then we have $\varphi \alpha \varphi^{-1} = \beta$. But we can write α and β in many different ways, even without disturbing the setup where the 1-cycles come first, the 2-cycles next, etc. If we rewrite β as (6)(4)(1,3)(5,7,2), then the method above gives a new φ , namely

and we still have $\varphi \alpha \varphi^{-1} = \beta$. (Apparently the old φ and the new one are in the same left coset of the centralizer of α .) So the φ is not unique, and we <u>may</u> be able to pick one that has some other property, e.g., one that is in some subgroup G of S_n that also contains α, β , so that α, β are also conjugate in G.

Ex: It is left to the students of combinatorics in the class to see that, in S_5 , the cardinalities of the conjugacy classes are as follows:

- the cardinality of the single-element class $\{e\}$ is 1;
- the 2-cycles form a conjugacy class of $(5 \cdot 4)/2 = 10$ elements;
- the 3-cycles form a conjugacy class of $(5 \cdot 4 \cdot 3)/3 = 20$ elements;

- the 4-cycles form a conjugacy class of $(5 \cdot 4 \cdot 3 \cdot 2)/4 = 30$ elements;
- the 5-cycles form a conjugacy class of 5!/5 = 24 elements;
- the products of two disjoint 2-cycles form a conjugacy class of $(5 \cdot 4 \cdot 3 \cdot 2)/(2 \cdot 2 \cdot 2) = 15$ elements;
- the products of a 3-cycle and a 2-cycle which are disjoint form a conjugacy class of $5!/(3 \cdot 2) = 20$ elements;

so the class equation for \mathcal{S}_5 is

120 = 1 + 10 + 20 + 30 + 24 + 15 + 20 .