
Section 10: Counting the Elements of a Finite Group

Let G be a group and H a subgroup. Because the right cosets are the family of equivalence
classes with respect to an equivalence relation on G, it follows that the right cosets of H in G form
a partition of G (and similarly for the left cosets). Each right coset has the same cardinality as
H itself, because H → Ha : h 7→ ha is one-to-one and onto. Moreover (and this is almost the
only time that we will use both the left and right cosets at the same time), there is a one-to-one
correspondence from the set of right cosets to the set of left cosets, given by Ha 7→ a−1H. (It is
necessary to throw in the inverse here to make the correspondence well-defined: If Ha = Hb, then
we may have aH 6= bH, but because ab−1 ∈ H, we also have (b−1)−1a−1 = ba−1 = (ab−1)−1 ∈ H,
and hence a−1H = b−1H. For an example of this, see the last example in the notes for Section 9:
We have 〈g〉f = 〈g〉f4g, f〈g〉 6= f4g〈g〉 and f−1〈g〉 = f4〈g〉 = f4g〈g〉 = (f4g)−1〈g〉.) Thus the
cardinalities of the sets of right cosets and left cosets are equal. We denote this common cardinality
by [G : H] and call it the index of H in G. If G is a finite group, then this index is surely finite; if
G is infinite, then it could be finite or infinite. ([Z : 5Z] = 5; [Q : Z] is infinite.)

Suppose now that G is a finite group, with a subgroup H. Then [G : H] is also finite, say n,
and, picking one element ai, i = 1, 2, . . . , n, from each of the right cosets of H in G, we get

|G| = |Ha1|+ |Ha2|+ · · ·+ |Han| = n|H| .

(A set like {a1, a2, . . . , an}, one from each coset, is called a “set of coset representatives” of H; such
a set doesn’t have much structure — it’s usually just a convenient way to list the cosets of H.)
We’ve proved a useful and important theorem:

Lagrange’s Thm: Let H be a subgroup of a finite group G. Then |G| = |H|[G : H]. In particular,
the order of any subgroup or element of G divides the order of G.

Ex: For any cyclic group 〈x〉 with order n and any divisor d of n, there is exactly one subgroup
〈xn/d〉 of order d.

Ex: Q8 has one subgroup of order 1 (〈I〉), one of order 2 (〈−I〉), three of order 4 (〈J〉, 〈K〉, and
〈L〉), and one of order 8 (Q8 itself).

Ex: Sn has order n!, and it has elements of orders 1 through n, namely 1-cycles, 2-cycles, and so
on up to n-cycles. It also has subgroups of 2n, namely Dn, and n!/2, namely An.

A fair question is: If d is a factor of |G|, must there be at least one subgroup of order d? It
turns out there is such a subgroup if d is a power of a prime number; but for a general d there may
not be a subgroup. In particular, we’ll see that A4, which has 4!/2 = 12 elements, has no subgroup
of 6 elements.

Cor: If a group has order a prime number, then the group is cyclic, generated by any non-identity
element of the group.

Pf: Let G be a group for which |G| = p, a prime number, and let g ∈ G − {e}. Then 〈g〉 is a
nontrivial subgroup of G, and its order divides |G| = p, so its order is p, so 〈g〉 = G.//

Here is a general result, also a corollary of Lagrange’s theorem, that yields as a corollary a
result named for Euler, which in turn yields as a corollary a result named for Fermat. The proofs,
as befits corollaries, are very short: First, the order of every element in a finite group divides the
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order of the group. Second, the set of elements of Zn that are relatively prime to n form a group
under multiplication mod n; the number of such elements, i.e., the order of this group, is denoted
by ϕ(n) and called the “Euler phi-function” of n. Third, if n is a prime p, then the only element
of Zp that is not relatively prime to p is 0, so ϕ(p) = p− 1. And recall that “a ≡ b mod n” means
that the integers a, b have the same remainder on long division by the positive integer n; i.e., that
a, b represent the same element of Zn.

Cor: If G is a finite group, then for every x in G, x|G| = e.

Euler’s Thm: If k is an integer relatively prime to the positive integer n, then kϕ(n) ≡ 1 mod n.

Fermat’s Thm: If k is an integer not divisible by the prime p, then kp−1 ≡ 1 mod p.

So, for example, for every element f of Sn, fn! = e; and because ϕ(6) = 2, 192 ≡ 1 mod 6; and
256 ≡ 1 mod 7.

Another handy equation for establishing facts about a finite group is called the class equation
of the group. Again, it will follow quickly once we have set up the “machinery” that goes into it.
We begin with a fact that may have already suggested itself to you. Recall that we say an element
g of a group G is called conjugate (in G) to another element h if there is an element x of G for
which xgx−1 = h. The proof of the following result is a good exercise.

Lemma: “Is conjugate (in G) to” is an equivalence relation on G.

Hence, G is partitioned into “conjugacy classes”, each consisting of the elements that are con-
jugate to each other. Unlike cosets, these conjugacy classes need not have the same number of
elements; but at least there is a way to write down how many elements there are in a given con-
jugacy class. Recall that, if g is an element of a group G, then the set of elements x of G that
commute with g, i.e., for which xg = gx, forms a subgroup Z(g) called the centralizer of g.

Lemma: Two elements x, y of G have the property that xgx−1 = ygy−1 iff x, y are in the same
left coset of Z(G) in G. Hence, the number of elements in the conjugacy class of g is equal to the
index [G : Z(g)] (and hence, if G is finite, it divides |G|).

Pf: The first sentence just uses the definition of left coset:

xgx−1 = ygy−1 ⇔ y−1xg = gy−1x ⇔ y−1x ∈ Z(g) ⇔ xZ(g) = yZ(g) .

The second sentence follows immediately, because all the elements of a given left coset of Z(g)
conjugate g to the same element of G, and different cosets correspond to different conjugates of
g.//

Now to say that an element g of G has only one conjugate (which must be itself) is to say that
G commutes with every element of G, i.e., that g ∈ Z(G), the center of G. Thus, Z(G) is the union
of all the one-element conjugacy classes in G.

Class Equation: Let G be a finite group, and take one element g1, g2, . . . , gs out of each of the
conjugacy classes of G that have at least two elements. Then

|G| = |Z(G)|+
s∑

i=1

[G : Z(gi)] .
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Pf: Because the conjugacy classes partition G, we know that the order of G is the sum of the
cardinalities of all of the conjugacy classes. If we group together the one-element conjugacy classes
into Z(G), each of the remaining conjugacy classes has at least two elements, and we have chosen
one of these elements to be gi, say. And we have seen above that the cardinality of the conjugacy
class containing gi is the index of Z(gi) in G.//

It is useful to note that we have specifically arranged in this equation that none of the indices
[G : Z(gi)] is a 1. Let us look at one example, and then prove a result using this equation.

Ex: In D6, the only elements that commute with every element are e, f3, so they constitute Z(D6).
Now gfg−1 = gfg = f5gg = f5, so f, f5 are in the same conjugacy class. Now Z(f) contains f
itself and hence all of 〈f〉 (including 〈f3〉 = Z(D6)), but it is not all of D6, so |Z(f)| is divisible
by |〈f〉| = 6 and properly divides |D6| = 12, i.e., it is 6; and so the cardinality of the conjugacy
class containing f is [D6 : Z(f)] = 12/6 = 2; i.e., this class is {f, f5}. Similarly, {f2, f4} is another
conjugacy class. And Z(g) contains Z(D6) and g and is not all of D6, so its order, a proper
divisor of 12 divisible by |{e, f3, g, f3g}| = 4, is 4; and hence the number of conjugates of g is
[D6 : Z(g)] = 12/4 = 3. We have fgf−1 = f2g and f2gf−2 = f4g, so that the conjugacy class
of g is {g, f2g, f4g}. And the remaining conjugacy class is {fg, f3g, f5g}. We have sorted all the
elements into their conjugacy classes, and one set of representatives of the conjugacy classes that
have more than one element is {f, f2, g, fg}:

D6 = {e, f3} ∪ {f, f5} ∪ {f2, f4} ∪ {g, f2g, f4g} ∪ {fg, f3g, f5g}
|D6| = |Z(D6)|+ [D4 : Z(f)] + [D5 : Z(f2)] + [D5 : Z(g)] + [D6 : Z(fg)]

12 = 2 + 2 + 2 + 3 + 3 .

That last equation was not very interesting, so it may be hard to see what good the class
equation does. Here’s one use of it in proving a useful fact:

Prop: If |G| is a power of a prime number, then Z(G) is not trivial. If |G| is the square of a prime
number, then G is abelian.

Pf: Suppose first that |G| = pn where p is a prime. Then both |G| and all of the [G : Z(gi] in the
class equation are powers of p, the only divisors of pn, and none of the factors [G : Z(gi)] are 1, so
they are all divisible by p. Thus, the only remaining term in the class equation, |Z(G)|, must be
divisible by p also, so Z(G) cannot be trivial.

Now suppose that |G| = p2. We have just shown that Z(G) has either p or p2 elements, and
we want to prove it must be p2. So assume not, by way of contradiction, and take an element g in
G− Z(G). Then Z(g) contains at least Z(G) and g; so it has more than p elements, and hence it
has p2 elements. But that means g commutes with every element of G, i.e., g ∈ Z(G), contradicting
our choice of g and completing the proof.//

Thus, with a little more work, we can show that the only essentially different groups of order
(cardinality) a square of a prime p are Zp2 and Zp × Zp.

Lemma: If (k1, k2, . . . , kr) is an r-cycle in Sn and ϕ ∈ Sn, then

ϕ ◦ (k1, k2, . . . , kr) ◦ ϕ−1 = (ϕ(k1), ϕ(k2), . . . , ϕ(kr)) , (∗)

another r-cycle. Thus, if two elements of Sn are conjugate in a subgroup of Sn, then their disjoint
cycle decompositions have the same numbers of r-cycles for each positive integer r. The converse
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is true in Sn (but it may not be true in a subgroup, because the ϕ that is necessary to conjugate
one element into another with a “matching” disjoint cycle decomposition may not exist in the
subgroup).

Pf: We show that both sides of (∗) have the same effect on an element j of {1, 2, . . . , n}, considering
two cases: where j is one of the ϕ(ki)’s, i = 1, . . . , r, and where j is not one of the ϕ(ki)’s. If
j = ϕ(ki), then clearly the right side of (∗) takes it to ϕ(ki+1); while the left side takes it, first to
ki, then to ki+1 [or to k1, if i = r — we won’t bother to mention this case again], then to ϕ(ki+1);
so the results are the same in this case. If j is not one of the ϕ(ki)’s, then the right side of the
equation takes it to itself; while the left side takes it first to ϕ−1(j) — which is not one of the ki’s,
because ϕ−1 is one-to-one — then to ϕ−1(j) again (because it is not one of the ki’s, so the r-cycle
doesn’t move it), then to ϕ(ϕ−1(j)) = j; so the results are also the same in this case. Equation (∗)
follows.

Thus, if an element α of Sn can be written as α = γ1γ2 . . . γs where the γi’s are disjoint cycles,
then

ϕαϕ−1 = (ϕγ1ϕ
−1)(ϕγ2ϕ

−1) . . . (ϕγsϕ
−1) ,

and by equation (∗) each of the (ϕγiϕ
−1)’s is a cycle of the same length as the corresponding γi;

and the (ϕγ1ϕ
−1)’s are still disjoint because ϕ is one-to-one.

For the converse in the context of Sn, suppose we have two elements α, β for which the disjoint
cycle decompositions have the same number of cycles of each length. Then if we arrange the cycles
in both factorizations so that, say, the 1-cycles come first, the 2-cycles next, the 3-cycles next, and
so on, and then let ϕ be the function that assigns the first entry that appears in α to the first in
β, the second in α to the second in β, and so on, then we will have ϕαϕ−1 = β.//

To see by example how the construction of the necessary ϕ in the last paragraph would work,
let us take α = (1, 2)(3, 4, 5) = (6)(7)(1, 2)(3, 4, 5) and β = (4)(6)(3, 1)(2, 5, 7) in S7. If we set

ϕ =

(
1 2 3 4 5 6 7
3 1 2 5 7 4 6

)
,

then we have ϕαϕ−1 = β. But we can write α and β in many different ways, even without disturbing
the setup where the 1-cycles come first, the 2-cycles next, etc. If we rewrite β as (6)(4)(1, 3)(5, 7, 2),
then the method above gives a new ϕ, namely

ϕ =

(
1 2 3 4 5 6 7
1 3 5 7 2 6 4

)
,

and we still have ϕαϕ−1 = β. (Apparently the old ϕ and the new one are in the same left coset of
the centralizer of α.) So the ϕ is not unique, and we may be able to pick one that has some other
property, e.g., one that is in some subgroup G of Sn that also contains α, β, so that α, β are also
conjugate in G.

Ex: It is left to the students of combinatorics in the class to see that, in S5, the cardinalities of
the conjugacy classes are as follows:

• the cardinality of the single-element class {e} is 1;

• the 2-cycles form a conjugacy class of (5 · 4)/2 = 10 elements;

• the 3-cycles form a conjugacy class of (5 · 4 · 3)/3 = 20 elements;
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• the 4-cycles form a conjugacy class of (5 · 4 · 3 · 2)/4 = 30 elements;

• the 5-cycles form a conjugacy class of 5!/5 = 24 elements;

• the products of two disjoint 2-cycles form a conjugacy class of (5 · 4 · 3 · 2)/(2 · 2 · 2) = 15
elements;

• the products of a 3-cycle and a 2-cycle which are disjoint form a conjugacy class of 5!/(3 ·2) =
20 elements;

so the class equation for S5 is

120 = 1 + 10 + 20 + 30 + 24 + 15 + 20 .
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