## Section 10: Counting the Elements of a Finite Group

Let $G$ be a group and $H$ a subgroup. Because the right cosets are the family of equivalence classes with respect to an equivalence relation on $G$, it follows that the right cosets of $H$ in $G$ form a partition of $G$ (and similarly for the left cosets). Each right coset has the same cardinality as $H$ itself, because $H \rightarrow H a: h \mapsto h a$ is one-to-one and onto. Moreover (and this is almost the only time that we will use both the left and right cosets at the same time), there is a one-to-one correspondence from the set of right cosets to the set of left cosets, given by $H a \mapsto a^{-1} H$. (It is necessary to throw in the inverse here to make the correspondence well-defined: If $H a=H b$, then we may have $a H \neq b H$, but because $a b^{-1} \in H$, we also have $\left(b^{-1}\right)^{-1} a^{-1}=b a^{-1}=\left(a b^{-1}\right)^{-1} \in H$, and hence $a^{-1} H=b^{-1} H$. For an example of this, see the last example in the notes for Section 9: We have $\langle g\rangle f=\langle g\rangle f^{4} g, f\langle g\rangle \neq f^{4} g\langle g\rangle$ and $f^{-1}\langle g\rangle=f^{4}\langle g\rangle=f^{4} g\langle g\rangle=\left(f^{4} g\right)^{-1}\langle g\rangle$.) Thus the cardinalities of the sets of right cosets and left cosets are equal. We denote this common cardinality by $[G: H]$ and call it the index of $H$ in $G$. If $G$ is a finite group, then this index is surely finite; if $G$ is infinite, then it could be finite or infinite. $([\mathbb{Z}: 5 \mathbb{Z}]=5 ;[\mathbb{Q}: \mathbb{Z}]$ is infinite.)

Suppose now that $G$ is a finite group, with a subgroup $H$. Then $[G: H]$ is also finite, say $n$, and, picking one element $a_{i}, i=1,2, \ldots, n$, from each of the right cosets of $H$ in $G$, we get

$$
|G|=\left|H a_{1}\right|+\left|H a_{2}\right|+\cdots+\left|H a_{n}\right|=n|H| .
$$

(A set like $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, one from each coset, is called a "set of coset representatives" of $H$; such a set doesn't have much structure - it's usually just a convenient way to list the cosets of $H$.) We've proved a useful and important theorem:

Lagrange's Thm: Let $H$ be a subgroup of a finite group $G$. Then $|G|=|H|[G: H]$. In particular, the order of any subgroup or element of $G$ divides the order of $G$.

Ex: For any cyclic group $\langle x\rangle$ with order $n$ and any divisor $d$ of $n$, there is exactly one subgroup $\left\langle x^{n / d}\right\rangle$ of order $d$.

Ex: $Q_{8}$ has one subgroup of order $1(\langle I\rangle)$, one of order $2(\langle-I\rangle)$, three of order $4(\langle J\rangle,\langle K\rangle$, and $\langle L\rangle$ ), and one of order 8 ( $Q_{8}$ itself).

Ex: $\mathcal{S}_{n}$ has order $n$ !, and it has elements of orders 1 through n, namely 1-cycles, 2 -cycles, and so on up to $n$-cycles. It also has subgroups of $2 n$, namely $D_{n}$, and $n!/ 2$, namely $\mathcal{A}_{n}$.

A fair question is: If $d$ is a factor of $|G|$, must there be at least one subgroup of order $d$ ? It turns out there is such a subgroup if $d$ is a power of a prime number; but for a general $d$ there may not be a subgroup. In particular, we'll see that $A_{4}$, which has $4!/ 2=12$ elements, has no subgroup of 6 elements.

Cor: If a group has order a prime number, then the group is cyclic, generated by any non-identity element of the group.
Pf: Let $G$ be a group for which $|G|=p$, a prime number, and let $g \in G-\{e\}$. Then $\langle g\rangle$ is a nontrivial subgroup of $G$, and its order divides $|G|=p$, so its order is $p$, so $\langle g\rangle=G$.//

Here is a general result, also a corollary of Lagrange's theorem, that yields as a corollary a result named for Euler, which in turn yields as a corollary a result named for Fermat. The proofs, as befits corollaries, are very short: First, the order of every element in a finite group divides the
order of the group. Second, the set of elements of $\mathbb{Z}_{n}$ that are relatively prime to $n$ form a group under multiplication $\bmod n$; the number of such elements, i.e., the order of this group, is denoted by $\varphi(n)$ and called the "Euler phi-function" of $n$. Third, if $n$ is a prime $p$, then the only element of $\mathbb{Z}_{p}$ that is not relatively prime to $p$ is 0 , so $\varphi(p)=p-1$. And recall that " $a \equiv b \bmod n$ " means that the integers $a, b$ have the same remainder on long division by the positive integer $n$; i.e., that $a, b$ represent the same element of $\mathbb{Z}_{n}$.

Cor: If $G$ is a finite group, then for every $x$ in $G, x^{|G|}=e$.
Euler's Thm: If $k$ is an integer relatively prime to the positive integer $n$, then $k^{\varphi(n)} \equiv 1 \bmod n$.
Fermat's Thm: If $k$ is an integer not divisible by the prime $p$, then $k^{p-1} \equiv 1 \bmod p$.
So, for example, for every element $f$ of $\mathcal{S}_{n}, f^{n!}=e$; and because $\varphi(6)=2,19^{2} \equiv 1 \bmod 6$; and $25^{6} \equiv 1 \bmod 7$.

Another handy equation for establishing facts about a finite group is called the class equation of the group. Again, it will follow quickly once we have set up the "machinery" that goes into it. We begin with a fact that may have already suggested itself to you. Recall that we say an element $g$ of a group $G$ is called conjugate (in $G$ ) to another element $h$ if there is an element $x$ of $G$ for which $x g x^{-1}=h$. The proof of the following result is a good exercise.

Lemma: "Is conjugate (in $G$ ) to" is an equivalence relation on $G$.
Hence, $G$ is partitioned into "conjugacy classes", each consisting of the elements that are conjugate to each other. Unlike cosets, these conjugacy classes need not have the same number of elements; but at least there is a way to write down how many elements there are in a given conjugacy class. Recall that, if $g$ is an element of a group $G$, then the set of elements $x$ of $G$ that commute with $g$, i.e., for which $x g=g x$, forms a subgroup $Z(g)$ called the centralizer of $g$.

Lemma: Two elements $x, y$ of $G$ have the property that $x g x^{-1}=y g y^{-1}$ iff $x, y$ are in the same left coset of $Z(G)$ in $G$. Hence, the number of elements in the conjugacy class of $g$ is equal to the index $[G: Z(g)]$ (and hence, if $G$ is finite, it divides $|G|)$.
$P f:$ The first sentence just uses the definition of left coset:
$x g x^{-1}=y g y^{-1} \quad \Leftrightarrow \quad y^{-1} x g=g y^{-1} x \quad \Leftrightarrow \quad y^{-1} x \in Z(g) \quad \Leftrightarrow \quad x Z(g)=y Z(g)$.
The second sentence follows immediately, because all the elements of a given left coset of $Z(g)$ conjugate $g$ to the same element of $G$, and different cosets correspond to different conjugates of g.//

Now to say that an element $g$ of $G$ has only one conjugate (which must be itself) is to say that $G$ commutes with every element of $G$, i.e., that $g \in Z(G)$, the center of $G$. Thus, $Z(G)$ is the union of all the one-element conjugacy classes in $G$.

Class Equation: Let $G$ be a finite group, and take one element $g_{1}, g_{2}, \ldots, g_{s}$ out of each of the conjugacy classes of $G$ that have at least two elements. Then

$$
|G|=|Z(G)|+\sum_{i=1}^{s}\left[G: Z\left(g_{i}\right)\right] .
$$

Pf: Because the conjugacy classes partition $G$, we know that the order of $G$ is the sum of the cardinalities of all of the conjugacy classes. If we group together the one-element conjugacy classes into $Z(G)$, each of the remaining conjugacy classes has at least two elements, and we have chosen one of these elements to be $g_{i}$, say. And we have seen above that the cardinality of the conjugacy class containing $g_{i}$ is the index of $Z\left(g_{i}\right)$ in $G$.//

It is useful to note that we have specifically arranged in this equation that none of the indices $\left[G: Z\left(g_{i}\right)\right]$ is a 1 . Let us look at one example, and then prove a result using this equation.

Ex: In $D_{6}$, the only elements that commute with every element are $e, f^{3}$, so they constitute $Z\left(D_{6}\right)$. Now $g f g^{-1}=g f g=f^{5} g g=f^{5}$, so $f, f^{5}$ are in the same conjugacy class. Now $Z(f)$ contains $f$ itself and hence all of $\langle f\rangle$ (including $\left\langle f^{3}\right\rangle=Z\left(D_{6}\right)$ ), but it is not all of $D_{6}$, so $|Z(f)|$ is divisible by $|\langle f\rangle|=6$ and properly divides $\left|D_{6}\right|=12$, i.e., it is 6 ; and so the cardinality of the conjugacy class containing $f$ is $\left[D_{6}: Z(f)\right]=12 / 6=2$; i.e., this class is $\left\{f, f^{5}\right\}$. Similarly, $\left\{f^{2}, f^{4}\right\}$ is another conjugacy class. And $Z(g)$ contains $Z\left(D_{6}\right)$ and $g$ and is not all of $D_{6}$, so its order, a proper divisor of 12 divisible by $\left|\left\{e, f^{3}, g, f^{3} g\right\}\right|=4$, is 4 ; and hence the number of conjugates of $g$ is $\left[D_{6}: Z(g)\right]=12 / 4=3$. We have $f g f^{-1}=f^{2} g$ and $f^{2} g f^{-2}=f^{4} g$, so that the conjugacy class of $g$ is $\left\{g, f^{2} g, f^{4} g\right\}$. And the remaining conjugacy class is $\left\{f g, f^{3} g, f^{5} g\right\}$. We have sorted all the elements into their conjugacy classes, and one set of representatives of the conjugacy classes that have more than one element is $\left\{f, f^{2}, g, f g\right\}$ :

$$
\begin{aligned}
D_{6} & =\left\{e, f^{3}\right\} \cup\left\{f, f^{5}\right\} \cup\left\{f^{2}, f^{4}\right\} \cup\left\{g, f^{2} g, f^{4} g\right\} \cup\left\{f g, f^{3} g, f^{5} g\right\} \\
\left|D_{6}\right| & =\left|Z\left(D_{6}\right)\right|+\left[D_{4}: Z(f)\right]+\left[D_{5}: Z\left(f^{2}\right)\right]+\left[D_{5}: Z(g)\right]+\left[D_{6}: Z(f g)\right] \\
12 & =2+2+2+3+3
\end{aligned}
$$

That last equation was not very interesting, so it may be hard to see what good the class equation does. Here's one use of it in proving a useful fact:

Prop: If $|G|$ is a power of a prime number, then $Z(G)$ is not trivial. If $|G|$ is the square of a prime number, then $G$ is abelian.
Pf: Suppose first that $|G|=p^{n}$ where $p$ is a prime. Then both $|G|$ and all of the $\left[G: Z\left(g_{i}\right]\right.$ in the class equation are powers of $p$, the only divisors of $p^{n}$, and none of the factors $\left[G: Z\left(g_{i}\right)\right]$ are 1 , so they are all divisible by $p$. Thus, the only remaining term in the class equation, $|Z(G)|$, must be divisible by $p$ also, so $Z(G)$ cannot be trivial.

Now suppose that $|G|=p^{2}$. We have just shown that $Z(G)$ has either $p$ or $p^{2}$ elements, and we want to prove it must be $p^{2}$. So assume not, by way of contradiction, and take an element $g$ in $G-Z(G)$. Then $Z(g)$ contains at least $Z(G)$ and $g$; so it has more than $p$ elements, and hence it has $p^{2}$ elements. But that means $g$ commutes with every element of $G$, i.e., $g \in Z(G)$, contradicting our choice of $g$ and completing the proof.//

Thus, with a little more work, we can show that the only essentially different groups of order (cardinality) a square of a prime $p$ are $\mathbb{Z}_{p^{2}}$ and $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

Lemma: If $\left(k_{1}, k_{2}, \ldots, k_{r}\right)$ is an $r$-cycle in $\mathcal{S}_{n}$ and $\varphi \in \mathcal{S}_{n}$, then

$$
\begin{equation*}
\varphi \circ\left(k_{1}, k_{2}, \ldots, k_{r}\right) \circ \varphi^{-1}=\left(\varphi\left(k_{1}\right), \varphi\left(k_{2}\right), \ldots, \varphi\left(k_{r}\right)\right), \tag{*}
\end{equation*}
$$

another $r$-cycle. Thus, if two elements of $\mathcal{S}_{n}$ are conjugate in a subgroup of $\mathcal{S}_{n}$, then their disjoint cycle decompositions have the same numbers of $r$-cycles for each positive integer $r$. The converse
is true in $\mathcal{S}_{n}$ (but it may not be true in a subgroup, because the $\varphi$ that is necessary to conjugate one element into another with a "matching" disjoint cycle decomposition may not exist in the subgroup).
$P f:$ We show that both sides of $(*)$ have the same effect on an element $j$ of $\{1,2, \ldots, n\}$, considering two cases: where $j$ is one of the $\varphi\left(k_{i}\right.$ 's, $i=1, \ldots, r$, and where $j$ is not one of the $\varphi\left(k_{i}\right)$ 's. If $j=\varphi\left(k_{i}\right)$, then clearly the right side of $(*)$ takes it to $\varphi\left(k_{i+1}\right)$; while the left side takes it, first to $k_{i}$, then to $k_{i+1}$ [or to $k_{1}$, if $i=r$ - we won't bother to mention this case again], then to $\varphi\left(k_{i+1}\right)$; so the results are the same in this case. If $j$ is not one of the $\varphi\left(k_{i}\right)$ 's, then the right side of the equation takes it to itself; while the left side takes it first to $\varphi^{-1}(j)$ - which is not one of the $k_{i}$ 's, because $\varphi^{-1}$ is one-to-one - then to $\varphi^{-1}(j)$ again (because it is not one of the $k_{i}$ 's, so the $r$-cycle doesn't move it), then to $\varphi\left(\varphi^{-1}(j)\right)=j$; so the results are also the same in this case. Equation (*) follows.

Thus, if an element $\alpha$ of $\mathcal{S}_{n}$ can be written as $\alpha=\gamma_{1} \gamma_{2} \ldots \gamma_{s}$ where the $\gamma_{i}$ 's are disjoint cycles, then

$$
\varphi \alpha \varphi^{-1}=\left(\varphi \gamma_{1} \varphi^{-1}\right)\left(\varphi \gamma_{2} \varphi^{-1}\right) \ldots\left(\varphi \gamma_{s} \varphi^{-1}\right),
$$

and by equation $(*)$ each of the $\left(\varphi \gamma_{i} \varphi^{-1}\right)$ 's is a cycle of the same length as the corresponding $\gamma_{i}$; and the ( $\varphi \gamma_{1} \varphi^{-1}$ )'s are still disjoint because $\varphi$ is one-to-one.

For the converse in the context of $\mathcal{S}_{n}$, suppose we have two elements $\alpha, \beta$ for which the disjoint cycle decompositions have the same number of cycles of each length. Then if we arrange the cycles in both factorizations so that, say, the 1 -cycles come first, the 2 -cycles next, the 3 -cycles next, and so on, and then let $\varphi$ be the function that assigns the first entry that appears in $\alpha$ to the first in $\beta$, the second in $\alpha$ to the second in $\beta$, and so on, then we will have $\varphi \alpha \varphi^{-1}=\beta . / /$

To see by example how the construction of the necessary $\varphi$ in the last paragraph would work, let us take $\alpha=(1,2)(3,4,5)=(6)(7)(1,2)(3,4,5)$ and $\beta=(4)(6)(3,1)(2,5,7)$ in $\mathcal{S}_{7}$. If we set

$$
\varphi=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 1 & 2 & 5 & 7 & 4 & 6
\end{array}\right)
$$

then we have $\varphi \alpha \varphi^{-1}=\beta$. But we can write $\alpha$ and $\beta$ in many different ways, even without disturbing the setup where the 1 -cycles come first, the 2 -cycles next, etc. If we rewrite $\beta$ as $(6)(4)(1,3)(5,7,2)$, then the method above gives a new $\varphi$, namely

$$
\varphi=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 3 & 5 & 7 & 2 & 6 & 4
\end{array}\right)
$$

and we still have $\varphi \alpha \varphi^{-1}=\beta$. (Apparently the old $\varphi$ and the new one are in the same left coset of the centralizer of $\alpha$.) So the $\varphi$ is not unique, and we may be able to pick one that has some other property, e.g., one that is in some subgroup $G$ of $\mathcal{S}_{n}$ that also contains $\alpha, \beta$, so that $\alpha, \beta$ are also conjugate in $G$.

Ex: It is left to the students of combinatorics in the class to see that, in $\mathcal{S}_{5}$, the cardinalities of the conjugacy classes are as follows:

- the cardinality of the single-element class $\{e\}$ is 1 ;
- the 2 -cycles form a conjugacy class of $(5 \cdot 4) / 2=10$ elements;
- the 3 -cycles form a conjugacy class of $(5 \cdot 4 \cdot 3) / 3=20$ elements;
- the 4 -cycles form a conjugacy class of $(5 \cdot 4 \cdot 3 \cdot 2) / 4=30$ elements;
- the 5 -cycles form a conjugacy class of $5!/ 5=24$ elements;
- the products of two disjoint 2-cycles form a conjugacy class of $(5 \cdot 4 \cdot 3 \cdot 2) /(2 \cdot 2 \cdot 2)=15$ elements;
- the products of a 3 -cycle and a 2-cycle which are disjoint form a conjugacy class of $5!/(3 \cdot 2)=$ 20 elements;
so the class equation for $\mathcal{S}_{5}$ is

$$
120=1+10+20+30+24+15+20 .
$$

