Section 11: Normal Subgroups

It has probably occurred to you that we have made a group, Zs, of the cosets of 5Z in Z; so
why don’t we try to make a group out of the cosets of any subgroup of any group? The answer
is that sometimes we can, but we can’t do it in general because the obvious way to define an
operation on subgroups, (Ha)(Hb) = H(ab), may not be well-defined. What might go wrong?
Well, suppose Ha = Hc and Hb = Hd; i.e., ac™t,bd~' € H. For the product to be well-defined,
we need H(ab) = H(cd), i.e., ab(cd)™! € H, i.e., abd 'c™! € H. With the benefit of hindsight, we
throw a~'a into the middle of this product: For the product to be well-defined, we need

(a(bd ™ Ha Y (ac™) e H .

Now we know that ac™! € H and bd~! € H, so we need a(bd~')a~! € H; but bd~! could be any
element of H, and a could be any element of G. So what we need to make this operation on cosets

well-defined is that every conjugate of every element of H, by an element of GG, is again an element
of H.

Prop and Def: Let H be a subgroup of a group G. Then we call H a normal subgroup of GG, and
write H < G, if and only if any of the following equivalent conditions hold:

(a) (Ha)(Hb) = H(ab) gives a well-defined operation on the family of right cosets of H in G. (In
this case, the family of right cosets is a group, denoted G/H and called the factor group or
quotient group of G by H, or sometimes just “G mod H”.)

(b) H contains all the conjugates of all of its elements; i.e., gHg~* C H for all g in G.
(c) gHg™' = H for all g in G.

(d) For all g in G, Hg = gH; i.e., each right coset of H in G is a left coset and vice versa.

Pf: (a)—(d) are equivalent: The paragraph before the statement is the proof that (b) implies (a).
To see that (a) implies (b), let h,g be any element of H,G respectively; then clearly Hg = Hg
and Hh = H. By (a), i.e., well-definedness of the operation, we get Hgh = Hg, or equivalently
(gh)g~! € H; but this is (b). It is clear that (c) implies (b). To see that (b) implies (c), note that for
each g in G, we have gHg~! C H, but we also have g~! € G, so assuming (b), g"'H(¢~!)"! C H,
and hence H C gHg™ ' also; i.e., gHg~! = H. The equivalence of gHg™! = H and ¢H = Hyg is
clear, so (d) is equivalent to (c).

To see that the family of cosets of a normal subgroup forms a group under the operation in (a),
we only need to check that the operation is associative (which is very easy because the operation
on G is associative:

(HaHb)Hc = (H(ab))Hc = H(ab)e = Ha(bc) = HaH (bc) = Ha(HbHc) ),

that He = H acts as an identity, and that Ha™! acts as an inverse of the coset Ha for each a in
G, both of which are also easy.//

When H < G, I think of G/H as G with all of the H collapsed to the identity, and the other
cosets collapsed to other single elements. Of course, if H <G, then |G/H| = [G : H] (both sides are
the number of cosets of H in G), and if G is abelian, then so is G/H. (But I hasten to add that
G/H may be abelian even if G isn’t; we’ll see examples below.)



Sufficient conditions for normality: Let H be a subgroup of a group G. If any of the following
conditions are satisfied, then H < G. (But for each one, there are normal subgroups for which the
condition is not satisfied.)

(a) H C Z(G) (so every subgroup of an abelian group is normal).
(b) [G: H|=2.

(¢) H is the only subgroup of G of its order (cardinality).

Pf: (a) Suppose H C Z(G). Then for all h in H and ¢ in G, because h commutes with every
element of G, ghg™' = hgg~! = h € H, so gHg~! C H. (Counterexample to the converse: Any
group is normal in itself, but a nonabelian group is not contained in its center.)

(b) If [G : H] = 2, then there are only two right cosets of H in G, one being H itself, and the
other the complement of H in G; but the same is true of the left cosets, so the right and left cosets
of H in G are equal. (Counterexample to the converse: The trivial subgroup {0} is normal in the
abelian group Zs, but its index is 3, not 2.)

(c) It is not hard to show that conjugation by an element g of G is a homomorphism G — G
(that is, a function that respects the operation), and it is very easy (and probably was an exercise)
to see that it is one-to-one and onto G. Later we will see that the image of a subgroup under a
homomorphism; so gH g™, the image of H under conjugation by g, is always a subgroup of the same
cardinality as H. Thus, if H is the only one of that cardinality, then gHg~' = H. (Counterexample
to the converse: V has three subgroups of order 2, namely (a), (b) and (c), all normal because V'
is abelian.)//

Examples:

(a) The quaternion group Qg is one of the few nonabelian groups all of whose subgroups are
normal. Specifically, (—I) is normal because it is the center of g. The elements of the factor
group Qg/(—I) are the cosets of (—1I):

I=(-I)={I,-I}=—1, J=(-)J=—-J, K=-K, L=-L.

And we can build the multiplication table for these elements. For example, it is pretty clear
that I acts as an identity for these factor group. Now the product (J)(K) is defined to be
JK, which is L; and the product in the other order, (K)(J), is KJ = —L = L. Thus, even
though the elements J and K do not commute in Qg, their images J and K do commute in
Qs/(—I). In fact, the factor group is abelian, and we can see by the correspondence

I—e, Joa, Keob, Leoc

that its operation table looks just like that of the Klein 4-group:

I J K L e a b c
I|1 J K L ele a b ¢
J|J I L K ala e ¢ b
K|\K L I J blb ¢ e a
L|L K J I clec b a e

Before we leave this example, let’s note that the lattice of subgroups of Qg from (—I) looks
like the lattice of subgroups of V' (which looks like the lattice of subgroups of Qg/(—1I) because



the last two groups “look alike” — more on that below).

Also, (J) is normal in Qg because it contains half the elements of Qg. But there are only
two cosets, so the operation table is pretty simple and looks just like that of Zy under the
correspondence:

I={(J)«<0, K= (J)K < 1.

(b) In the abelian group Zsag4, all the subgroups, including (6), are normal. There are 4 elements
in this subgroup, and hence there are 6 cosets, i.e., elements of Za,/(6), namely

0=(6) ={0,6,12,18} =6 = 12 = 18 , quadl = (6)®1 = {1,7,13,19} =7, 2=(6)®d2, 3, 4, 5.

It is not hard to check that Zoys/(6) looks like Zg, and the subgroup lattice of Zgy4 from (6)
looks like that of Zg:

{4} {0}

{8} {12}

N/
{0}

(¢) As additive groups, Z is normal in Q or in R. As an element of Q/Z, T = 0, so 1/2 has
order 2, and 3/5 has order 5. In fact, every element of Q/Z has finite order, so Q/Z is a
“torsion” abelian group. Moreover, it is also “divisible”: Given any element z (say x = 2/9)
and any positive integer n (say n = 5), there is an element y of Q/Z for which ny = x (in

this case y = 2/(45)). But the larger group R/Z has lots of elements of infinite order, like /2
or m. We can think of R/Z as the set of points on a circle of circumference 1: 7 denotes the




point 7 units around the circle from some fixed point on it, where 7 = 5 if r and s differ by
an integer.

Terrible example: It is true that gHg ™! is always a subgroup of G of the same cardinality as H;

but if H is infinite, then it is possible that gHg™ ' is a proper subgroup of H for a particular ¢ in
G. (In such a case, as the proof shows, g~ H(g~!)~! properly contains H, so H is not normal.)
Here is an example: Let G = S(Z), H = {f € G : f(x) = Vx € Z"}, and g : Z — Z be the
“subtract 17 function g(z) = z — 1. Then gHg™! = {f € G : f(z) =  Vx € Z* U {0}}, a proper
subset of H. Here is an element of H that is not in gHg™!:

(0,-1)o(=2,-3)o(—4,—5)o--- .

Loose end: Earlier we claimed that A4, a group with 4!/2 = 12 elements had no subgroup of
6 elements. We can now prove that: Assume by way of contradiction that there is a subgroup
G of 6 elements; then because it has exactly half the elements of A4, G < A4. The disjoint cycle
decompositions of non-identity elements of A4 are 3-cycles and two disjoint 2-cycles; there are only
41/(2-2-2) = 3 of the latter form, and one identity, so G must have at least one 3-cycle — in fact,
two of them, say some (a,b,c) and its inverse, i.e., its square, (a,c,b). We want to show that all
the 3-cycles in A4 are in G; because Ay is generated by 3-cycles, that will mean that G = Ay, the
desired contradiction. To see this, take any 3-cycle (p, q,r). Because we have only four elements
to choose from, there must be an overlap of at least two numbers between a, b, ¢ and p, ¢, r; and
because we have both (a, b, c) and (a, ¢, b) in G, we may assume that a = p and b = ¢q. Of course if
¢ =r, then (p,q,r) = (a,b,c) € G. If ¢ # r, then because (a,b)(c,r) € A4 and G < Ay, we have

(p.a,7) = (¢,p,7)* = (b,a,7)* = [((a,0)(c,))(a, b, ) ((a, b) (e, 7)) ' € G .

Thus, every 3-cycle is in G, and we have the desired contradiction. So A4 has no 6-element subgroup.

Section 12: Homomorphisms
Recall from the notes and from the first exam:

Def: Let (G,*) and (H,o) be groups. Then a function ¢ : G — H is a homomorphism (of
groups) if it “respects the operations,” i.e., for all g1,g2 in G, ¢©(g1 * g2) = ©(g1) © ¢(g2). The
subset K = {g € G : ¢(g9) = ey} is the kernel of ¢. If ¢ is a one-to-one function, it is called a
monomorphism; if it is onto H, it is called an epimorphism; if both, it is an isomorphism.

We can adjust the diagram of which we saw a special case in the notes for Section 4: Starting
with any pair (g1, ¢g2) in the upper left, we get the same result if we go across and then down, or
down (side-by-side) and then across:

% % %

From now on we will again write group operations as juxtaposition unless it may cause confusion.
Let’s list the immediate results of this definition:



Prop: Let ¢ : G — H be a homomorphism. Then:

pleg) = en-

(a
(

b) For all n in Z and g in G, ¢(g") = ¢(g)".

(
d

)
)
¢) The kernel of ¢ is a normal subgroup of G.
) ¢ is a monomorphism if and only if its kernel is {eg}.
)

(e) For any ¢ in G for which o(g) is finite, o(¢(g)) is a factor of o(g). If ¢ is a monomorphism,
then the orders are equal.

Pf: (a) plec) = pleae) = plea)plea), but also pleq) = plea)en, so wlea)plea) = @lea)en
and we can cancel ¢(eq).

(b) For positive integers this is an induction, trivial for n = 1, the definition of homomorphism
for n = 2, and easy to step from n to n + 1. For n = 0 this is (a). For n < 0, let’s start with
n=-—1

p(9)elg™") = wlgg™") = wlec) = en

so (g7 ') = (p(g))~!. Thus, for larger negative n, say n = —m, we have ©(g") = ¢((g™)7!) =
(e(g™) =t = (e(g)™) ™" = p(g)"

(c) By (a), the kernel K contains eg, so it is not empty. Suppose a,b € K; then ¢(ab) =
@(a)cp(b) = epey = ey, so ab € K. Suppose a € K; then p(a™) = p(a)™' = e =epn, s0a"! €
K. Finally, suppose a € K and g € G; then ¢(gag™") = ¢(9)p(a)p(9)™" = @(9)enp(9)™" = e,
sogag ' € K.

(d) We know that eg goes to ep; if ¢ is one-to-one, e must be the only element of G that
goes to ey, i.e., K = {eg}. Conversely, suppose K = {eg} and ¢(g1) = ¢(g2). Then @(glggl) =
o(g1)e(g2)~! = en, so glggl € K. By hypothesis, g1g2_1 = eq, and hence g1 = go.

(e) Because ¢(g)°9) = p(g°9) = p(eq) = ey, we have that o(p(g)) divides o(g). If ¢ is a

monomorphism, then because none of g, g2, ...,¢°9 =1 are eg, none of v(g), ()%, ..., ¢@(g)°9~1

are egy, so o(p(g)) = o(g).//

Exs of homomorphisms: (1) The identity function G — G is an isomorphism. In general, any
isomorphism from a group onto itself is called an automorphism. For a cyclic group G = (x), if y is
another generator of GG, then z" — 4™ gives an automorphism of G. Thus, in particular, n — —n
is an automorphism of Z. And because 1 and 2 are both generators of Zs, the function Zs — Zs
given by

0—0, 1—2, 2—4, 3—1, 4—3

is an automorphism. For a general group G and an element g of G, “conjugation by ¢”, = — gxg™!,

is an automorphism of G; the conjugations by elements of G are called inner automorphisms. (Of
course, in an abelian group, all the inner automorphisms are the identity function.) And all of the
one-to-one correspondences of V' to itself that take e to e turn out to be automorphisms of V.

(2) The determinant is an epimorphism GL(n,R) — R — {0}. Its kernel, the set of matrices
with determinant 1, is called SL(n,R). (We mentioned this group earlier; now we can interpret it
as a kernel.)

(3) The “signum” function sgn : S,, — {1, —1}, defined by ¢ + (—1)® where b is the number of
backward pairs in ¢, is a epimorphism with kernel A,,.

(4) The function Z — Zs : a — a mod 5 is an epimorphism with kernel 5Z (provided, of course,
that the addition in Zs is done mod 5).



(5) Differentiation is a homomorphism from the additive group of differentiable functions on a
fixed interval in R into the additive group of all functions on that interval. Because some functions
are not the derivative of anything, it is not an epimorphism, and because constant functions all go
to 0, it is not a monomorphism.

(6) Physicists and geologists (crystallographers) make use of “group representations”, by which
they mean homomorphisms from groups (usually the ones inspired by geometric objects, like the
D,’s) into GL(n,R) for various n’s. For example, Dean Roelofs asked me for a group representation
for a group of order 10. I assumed that he would not have asked about the only abelian group of
order 10, namely Zg, so he meant D5. I gave him the function

Fio cos72° —sin72° . 1 0
sin72°  cos72° ’ g 0 —1
In straightforward ways we can show the following:

Prop: Let ¢ : G — H be a homomorphism. Then:

(a) For every subgroup L of G, ¢(L) = {¢(x) : « € L} is a subgroup of H. If L <G, then
©(L) <¢(G) (though ¢(L) may not be normal in all of H).

(b) For every subgroup M of H, o~ 1(M) = {x € G : ¢(z) € M} is a subgroup of G that contains
the kernel of ¢. If M < H, then o~ (M) <G.

(c) For every subgroup L of G, ¢~ !(p(L)) = LK where K is the kernel of . (Because K <G,
LK is a subgroup of G.) In particular, if K C L, then p~!(p(L)) = L.

(d) For every subgroup M of H, (o=t (M)) = M N o(G). In particular, if M C ¢(G), then
p(e™H (M) = M.

(e) There is a one-to-one correspondence, which preserves inclusion both ways, between the lattice
of subgroups of G that contain the kernel of ¢ and the lattice of subgroups contained in the
image of ¢. The inverse correspondences are given by ¢ and ¢~! on subgroups, and the
normal subgroups in G correspond to the normal subgroups in ¢(G) (though they may not
be normal in all of H).

We can see this in our earlier example: Recall the function ¢ : Qg — V defined by
p: +I—e +J+—a =*£K—b FL—c

Because ¢ is an epimorphism with kernel (—I), we get a natural one-to-one correspondence between
the subgroups of Qg that contain (—I) and the subgroups of V:

/|\
\|/




Here is an example of a homomorphism ¢ : G — H and L <G, but ¢(L) is not normal in H:
Let H = Dg, L = (g9), G = {e, g, f3, f3g} and ¢ : G — H be the inclusion monomorphism a  a.
Then L is normal in the abelian group G, but in the larger group H, conjugation by f takes g to
faf~' = f?g, outside of L.

We can finally make sense of the phrase that I have been using since early in the course,
saying that one group “behaves just like” another group. What I mean by that is that there is an
isomorphism from one group onto the other. Using this isomorphism, we see that the operation
table of one group transforms into the operation table of the other. Thus, whatever group-theoretic
property holds in one of these groups must also hold in the other: the abelian property, numbers
of elements of each given order, number of subgroups of each given order, etc., etc. Of course, the
isomorphism does not reflect properties that aren’t related to the group structure. For example,

there is an obvious isomorphism of the additive groups Masyx2(R) and R*, given by ( Z Z ) —

(a,b,c,d); but Myyo(R) has a familiar multiplication of matrices that has no obvious parallel
in R*. (Because the isomorphism is a one-to-one correspondence, we could artificially define a
multiplication in R* to match the one in Mo (RR), but it would not make a lot of sense.) So that
extra multiplication is not a “group-theoretic property.” As additive groups, they are essentially
the same.

Because an isomorphism is a one-to-one correspondence, it has an inverse function, also a one-
to-one correspondence. The composition of two isomorphisms is again a one-to-one correspondence.
And it is not hard to see that the inverse of an isomorphism or the composition of two isomorphisms
is again an isomorphism. As a result, the relation “there is an isomorphism from G to H” is an
equivalence relation on the family of all groups. That family is so huge, however, that to work with
it as a whole would take us into the deep forests of set theory. So let us let us give a useful name
and symbol to that equivalence relation and then turn back to our well-traveled road of individual
groups: If there is an isomorphism from G onto H, then we say “G is isomorphic to H” and write
G =2 H. So for example, we have seen that every cyclic group of order n is isomorphic to Z,, every
infinite cyclic group is isomorphic to Z, and V = Zo X Zs.

The following result is easy to prove, and we’ll return to it later.

Prop and Def: The set of all automorphisms from a group G onto itself is a subgroup of S(G),
denoted Aut(G). The conjugations by elements of G, i.e., the inner automorphisms of G, form a
subgroup of Aut(G) denoted Inn(G).

Here is a theorem that may be interesting but is not very useful, because S(G) is so much
larger than G itself. But at least it justifies the claim that every group is essentially a subgroup of
a symmetric group:

Cayley’s Thm: Let G be any group. Then the function ¢ : G — S(G) that is defined by: ¢(g)
is the function G — G : x — gz (in symbols, (¢(g))(x) = gx), is a monomorphism (and hence an
isomorphism onto its image, so G is isomorphic to a subgroup of S(G)).

Pf: That ¢(g) is a one-to-one function G — G is proved by cancellation of g. That it is onto G
follows from the fact that, for any v in G, (©(g))(¢~'y) = y. So ¢ is indeed a function from G into
S(G). To see it is a homomorphism, we must show that, for g, h in G, we have p(g) op(h) = ¢(gh).
But two functions are equal if they take each element of their common domain to the same element



of of their common codomain, so: For all z in G,

(p(g) o p(h))(x) = (¢(9))((p(h))(x)) = g(hz) = (gh)z = (p(gh))(z) ,

and the result follows. Finally, to see that it is a monomorphism, suppose ¢(g) = ¢(h); then
applying these two functions to the element e of G, we see g = h.//

Section 13: Homomorphisms and Normal Subgroups

We have seen that the kernel of a homomorphism is a normal subgroup. Now we complete the
connection between the two:

Def, Prop and the “First Isomorphism Thm (of Groups)”: (1) Let K be a normal subgroup
of G. Then the “canonical” function from G onto the factor group G/K, given by g — Kg, is an
epimorphism.

(2) Let ¢ : G — H be a group homomorphism. Then the kernel K of ¢ is a normal subgroup of
G, and G/K is isomorphic to the subgroup ¢(G) of H via the well-defined isomorphism @ : Kg —

©(9)-

In this diagram the vertical maps are the canonical homomorphism G — G/K : g — Kg and the
inclusion function ¢(G) — H : x — .

Pf: (1) Because K is a normal subgroup of G, we know that G /K makes sense, and the definition of
multiplication in this group makes the canonical map, which is clearly onto G/K, an epimorphism:
(Ka)(Kb) = K(ab).

(2) We show that @ is well-defined and one-to-one with the same string of implications, going
in two directions: For g1, g2 in G,

Kg=Kg < 919, €K = elgig") =en = e(91) = ©(g2) -

Because ¢ and @ hit the same elements in H, ¥ is onto ¢(G), so across the bottom of the diagram
above ® is an isomorphism.//

Ex: 1. Because Z — Zs : k — k mod 5 is an additive group epimorphism (where the addition in
Zs is mod 5), and 5Z is the kernel, we have Z/5Z = 7.

2. Because determinant is a multiplicative epimorphism from GL(n,R) to R — {0}, and
SL(n,R) ={A € GL(n,R) : det(A) = 1} is the kernel, we see that GL(n,R)/SL(n,R) = R — {0}.

3. You may not know much about absolute value of complex numbers: For z,y € R, if z = z+yi,
then |z| = |x + yi| = /22 + y?. But you can check that, for z,w € C, |zw| = |z||w|. Thinking
about drawing complex numbers in the plane (an “Argand diagram”), we see that, for each nonzero
z in C, z/|z| is the point on the unit circle U (the set of points one unit away from the origin) that
makes the same angle with the positive real axis as z does.



i|N

We get two homomorphisms of multiplicative groups:
(C—{0}) =R —{0}: 2 [2] (C—{0}) = (C—{0}) : z — z/|2]

The first of these has kernel U and image R (the positive real axis), so U is a subgroup of C — {0}
(necessarily normal, because C — {0} is abelian), and (C — {0})/U = R*. The second has kernel
RT and image U, so (C — {0})/Rt = Y.

The Second and Third Isomorphism Theorems are not really all that important, and are simple
consequences of the Fundamental Theorem:

Second Isomorphism Thm: Let H, K be subgroups of G with K «G. Then HK is a subgroup

of G and
H _HK

HNK K

Pf: Tt is immediate that H, K C HK = {hk : h € H,k € K} and, once we have shown that
HK is a subgroup of G, that K <« HK. It is left to the reader to show that HK is closed under
inverses, and that H N K is normal in H. We show that HK is closed under the operation: Let
hl,hg € H and kl,kQ S K; then (hlkl)(thz) = (hlhg)((hgllﬁhg)kg); of course, hiho € H, and
because, by the normality, the conjugate h;lklhg of k1 by h2_1 is in K, we have (h;lklhg)kg € K.
So (hlk‘l)(hzkg) c HK.

Now consider the canonical epimorphism G — G/K : g — Kg, with its domain restricted to
H. It is of course still a homomorphism, its kernel is the set of elements of K that are also in H,
ie, HN K, and its image is HK/K, the cosets of K in G that include elements of H. By the
Fundamental Theorem, the result follows.//

Third Isomorphism Thm: Let K C H be normal subgroups of G. Then H/K is a normal
subgroup of G/K and

G/K G

K-

Pf: For any Kh in H/K and Kg in G/K, we have ghg™! € H, so (Kg)(Kh)(Kg)~' € H/K.
Now consider the composition of the canonical epimorphisms G — G/K : ¢ — Kg and G/K —
(G/K)/(H/K) : Kg — (H/K)(Kg). This composition is still an epimorphism, and its kernel is
the set of elements g in G for which K¢ € H/K, which is just H. By the Fundamental Theorem,
the result follows.//

Ex: Consider the subgroup (10) in Zsg. What does Zao/(10) look like? Well, Zoy = Z/20Z and



(10) is the image of 10Z under the epimorphism Z — Zsgg, so Z20/(10) = (Z/20Z)/(10Z/20Z) =
Z/10Z = Zy.
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