
Section 14: Finite Abelian Groups

On the third exam, you were asked to prove the following:

Prop and Def: Let G be a group and H,K be subgroups of G. Then the function H ×K → G :
(h, k) 7→ hk is an isomorphism iff

(a) for all h in H and k in K, hk = kh,

(b) HK = G, and

(c) H ∩K = {e}.

In this case, G is the internal direct product of H and K.

It follows by induction that, for any finite abelian group G, G ∼= G(p1)×G(p2)× · · · ×G(pr),
where the pi’s are the primes that divide |G| and G(p) denotes the set of elements g of G for which
o(g) is a power of p. Our present goal is to show that G is a(n internal) direct product of cyclic
groups of orders powers of primes, and by what we have just seen, it is enough to prove that, if
every element of G is a power of the same prime p, then G is a direct product of cyclic groups of
orders powers of p.

Lemma: Let G be a finite abelian group in which every element has order the prime p or 1. Then
for each x in G and any subgroup H for which H∩〈x〉 = {e}, there is a subgroup M of G containing
H for which G is the internal direct product of 〈x〉 and M .

Pf: If x = e, set M = G. Otherwise, among the subgroups of G containing H that intersect 〈x〉
in {e}, pick one, M , that is as large as possible, i.e., if M ⊂ M ′, then M ′ ∩ 〈x〉 6= {e} (and hence
= 〈x〉, because 〈x〉 has no other subgroups). If 〈x〉M = G, then we are done, so assume by way
of contradiction that 〈x〉M 6= G. Then there is an element y of G − 〈x〉M . But then, because
M ⊂ 〈y〉M , by the choice of M we have 〈x〉 ∩ 〈y〉M = 〈x〉. Thus, x = ykm for some m in M and
k in Z. In fact, because M ∩ 〈x〉 = {e}, k can’t be a multiple of p, so yk is a generator of 〈y〉, say
y = (yk)r, and we can write y = (xm−1)r = xrm−r ∈ 〈x〉M , the desired contradiction. //

Now let G be a finite abelian group in which every element has order a power of the prime p. We
proceed by induction on the highest order pr of an element of G. If r = 1, we are done by repeated
use of the lemma. So assume it is true for all orders less than pr. Consider the homomorphism
ϕ : G → G : x → xp. Then ϕ(G) consists of the p-th powers of elements of G, so all its elements
have order a power of p less than the r-th, so by the induction hypothesis, ϕ(G) is an internal
direct product

ϕ(G) = 〈h1〉 × · · · × 〈hn〉

where o(hi) is a power of p less than pr. Note that, in the kernel K of ϕ, and in the factor group
G/ϕ(G), every element has order p or 1. Pick gi in G for which gpi = hi, and set G0 = 〈g1〉 . . . 〈gn〉,
so that ϕ(G) ⊆ G0. Then we can check that G0

∼= 〈g1〉 × · · · × 〈gn〉.
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It remains to show that G ∼= 〈x1〉 × · · · × 〈xk〉 × G0 where xi ∈ K: If K ⊆ G0, then G0 =
ϕ−1(ϕ(G0)) = ϕ−1(ϕ(G)) = G and we are done. Otherwise, take x1 from K−G0; then in G/ϕ(G),
we have 〈x1ϕ(G)〉 ∩ G0/ϕ(G) = {eϕ(G)}. By the lemma, there is a subgroup G1 of G/ϕ(G)
containing G0/ϕ(G) such that G/ϕ(G) ∼= 〈x1ϕ(G)〉 × G1; set G1 = ϕ−1(G1), so that ϕ(G) ⊆ G1.
Because x1ϕ(G) /∈ G1 and 〈x1〉 has only two subgroups, 〈x1〉∩G1 = {e}, so G ∼= 〈x1〉×G1. We have
ϕ(G1) = ϕ(G) and the kernel of the restriction of ϕ to G1 is K ∩G1. The argument above shows
that if we choose x2 from (K∩G1)−G0, we can find a subgroup G2 of G1 for which G1

∼= 〈x2〉×G2.
We continue until K ∩Gk ⊆ G0. This completes the proof.

Structure Theorem for Finite Abelian Groups: A finite abelian group of order n is, up to
isomorphism, a product of cyclic groups. The cyclic groups may have prime power orders, or they
may have orders d1, d2, . . . , dk−1, dk where dk|dk−1| . . . |d2|d1; these are called the invariants of the
group. The list of prime powers or the invariants uniquely determine the group up to isomorphism.

The uniqueness up to isomorphism can be inferred by counting numbers of elements of various
orders. For example, Z4 × Z2 × Z2 has 8 elements of order 4 (anything with 1 or 3 as the first
coordinate), while Z4 × Z4 has 12 (anything with 1 or 3 as either coordinate).

The decomposition into groups of prime power orders comes right out of the proof: Write G as
the product of its G(p)’s, and then write each G(p) as a product of cyclics of prime power orders.
We show by an example how to get the decomposition into factors whose orders are the invariants
(having the divisibility property). Suppose

G ∼= Z8 × Z8 × Z4 × Z2 × Z2

× Z27 × Z3 × Z3

× Z5 × Z5 .

Group together into a single product the first terms in each row, and the second terms into a prod-
uct, and so on. Because the orders in different rows are relatively prime, each of these subproducts
is cyclic:

Z8 × Z27 × Z5
∼= Z1080

Z8 × Z3 × Z5
∼= Z120

Z4 × Z3
∼= Z12

Z2
∼= Z2

Z2
∼= Z2

Z1080 × Z120 × Z12 × Z2 × Z2
∼= G

and 2|2|12|120|1080.

Cor: If G is a finite abelian group and d is a factor of |G|, then G has a subgroup of order d.
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Section 15: Sylow Theorems

For nonabelian groups, we don’t get such a nice description of all the groups of a given order.
But the three theorems proved by the Norwegian mathematician Sylow are often helpful.

Def: Let p be a prime integer. A (sub)group (of a group) is a p-(sub)group iff every element has
order a power of p. If G is any finite group and pn divides |G| but pn+1 doesn’t, then a subgroup
of G of order pn is a Sylow p-subgroup of G.

Sylow’s First Theorem: Let G be a finite group and p a prime that divides |G|.
(i) If pk divides |G|, then G has a subgroup of order pk. In particular, G has a Sylow p-subgroup.
(ii) If K is a p-subgroup of G and H is a Sylow p-subgroup, then K is contained in a conjugate

of H (which is also a Sylow p-subgroup of G).

Sylow’s Second Theorem: All Sylow p-subgroups of a finite group are conjugate. Thus, a Sylow
p-subgroup is normal iff it is the only Sylow p-subgroup.

Sylow’s Third Theorem: Suppose G is a finite group and pn is the highest power of the prime
P that divides |G|. Then the number of Sylow p-subgroups in G divides |G|/pn (and hence also
|G|) and is congruent to 1 mod p.

Proof of Sylow’s First Theorem (i): First we prove that every finite group with order divisible by
p has a Sylow p-subgroup: Induction on |G|. Assume that every finite group with fewer than |G|
elements has a Sylow p-subgroup. If some proper subgroup H of G has order divisible by the same
power of p, say pn, as G, then by the induction hypothesis, H has a subgroup of order pn, which
is a Sylow p-subgroup of G. If no proper subgroup has order divisible by pn, then the index in
G of every proper subgroup is divisible by p, so every term in the class equation except |Z(G)| is
divisible by p; so |Z(G)| is also divisible by p. Now by the Structure Theorem for Finite Abelian
Groups, Z(G) has a subgroup A of order p, and A / G. By the induction hypothesis, G/A has a
Sylow p-subgroup K, which has order pn−1. The preimage K in G of K in G/A has order pn.

Now to find p-subgroups of G with pk elements where k < n, by looking inside any Sylow
p-subgroup of G, we may assume that G has order a power of p, and use induction again: We saw
using the class equation that Z(G) 6= {e}, so we can find x of order p in Z(G). By the induction
hypothesis G/〈x〉 has a subgroup of order pk−1, and its preimage in G has order pk. //

Basic setup for the rest of the proofs: Let G be a finite group, let pn be the highest power of
p that divides |G|, and let X be the set of Sylow p-subgroups of G, i.e., the set of subgroups with
pn elements. Then we get an equivalence relation on X , given by:

H1RH2 iff there is an element g of G for which H2 = gH1g
−1.

The R-equivalence classes are called the G-orbits in X . By reasoning similar to the one used on
conjugation of elements in the proof of the class equation, the number of elements in the G-orbit of
a Sylow p-subgroup H is [G : N(H)], where N(H) = {g ∈ G : gHg−1 = H}, the normalizer of H.
Because H ⊆ N(H), the number of elements in the G-orbit of H divides |G|/pn, relatively prime
to p, but a factor of |G|. Moreover, for any subgroup K of G, there is a corresponding equivalence
relation: Two Sylow p-subgroups of G (not K) are equivalent iff they are conjugate by an element
of K. This gives a “finer” partition of X : Each G-orbit is a union of some K-orbits. And the
number of elements in the K-orbit of H is [K : K ∩N(H)], which divides |K|.
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Proof of Sylow’s First Theorem (ii): For K as in (ii), note that the number of elements in each K-
orbit is a power of p, but the K-orbits whose union is the G-orbit containing H add up to a factor of
|G|/pn, which is not divisible by p; so at least one of these K-orbits has only p0 = 1 element. Thus,
K ⊆ N(H ′) for an H ′ in the G-orbit containing H. But H ′/N(H ′), and |N(H ′)/H ′| = [N(H ′) : H ′]
divides [G : H ′] = |G|/pn, so |N(H ′)/H ′| is not divisible by p. For k in K, the element H ′k of
N(H ′)/H ′ has order both a power of p (because k does) and not divisible by p (because it divides
|N(H ′)/H ′|), so the order is 1, i.e., k ∈ H ′. Thus K ⊆ H ′, and H ′ is a (G-)conjugate of H. //

Proof of Sylow’s Second Theorem: The assertion that any two Sylow p-subgroups are conjugate
follows from (ii) of the First Theorem. (So in fact there is only one G-orbit in X , namely, the whole
set X .) The second assertion is then clear. //

Proof of Sylow’s Third Theorem: We have already seen that the number of elements in the G-orbit
X divides |G|/pn. To see that it is congruent to 1 mod p, let H be one of the Sylow p-subgroups of
G. Then the H-orbits in X all have cardinalities that are powers of p, and the H-orbit containing
H has only one element — conjugating H by elements of itself just gives itself. If H ′ is a Sylow
p-subgroup different from H, then H 6⊆ N(H ′) (for otherwise, as we saw in the proof of part (ii)
of the First Theorem, H ⊆ H ′ and hence H = H ′). So H ′ has more than one H-conjugate, and
hence its H-orbit has cardinality a power of p greater than 1. Thus, the cardinality of the G-orbit
X is the sum of 1 and powers of p greater than 1, so it is congruent to 1 mod p. //

The rest of Section 15 in the text includes a wonderful list of results showing how the Sylow
theorems can put limits on the non-isomorphic groups of a given order. We present below a
construction that allows us to build certain groups of given orders, so that, if a certain group is not
ruled out as possible by the Sylow theorems, we can sometimes actually build one. For example,
one result in the text is:

Cor: If the order of a finite group is the product of two primes p < q, and p does not divide q− 1,
then the group is cyclic.

Pf: The group G must have a Sylow p-subgroup H and a Sylow q-subgroup K, both cyclic because
they are of prime order. Now the number of Sylow q-subgroups divides p and is congruent to 1
mod q; because p < q, K must be the only Sylow q-subgroup. Let x be a generator of H. Then
conjugation by x is an element of Aut(K) whose order divides both o(x) = p and |Aut(K)| =
|U(Zq)| = q − 1; and by hypothesis, the only possible order of this conjugation is 1, i.e., it is the
identity. So xkx−1 = k for all k in K. It follows that all the elements of H commute with all the
elements of K, and hence that G is the internal direct product of its cyclic subgroups H,K, which
have relatively prime orders; so G is cyclic. //

But suppose that p does divide q− 1; must there be a non-cyclic group of that order? If p = 2,
then we know that the group Dq is a non-cyclic, in fact non-abelian, example. But in general, if p
divides q− 1, can we always find a non-cyclic — in fact, preferably a non-abelian — group of order
pq? It turns out that the answer is yes. The first step is to show that U(Zq) is cyclic when q is
prime; and this fact requires a bit more proof that I want to put here. But it follows that we can
find a homomorphism from Zp into U(Zq) ∼= Aut(Zq), by sending 1 to an automorphism of Zq of
order p. We can then complete the proof by using the following construction.

Construction: Suppose we have two groups, G and H, and a homomorphism ϕ : G → Aut(H)
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— so that, for any g in G, ϕ(g) is an automorphism of H. To minimize parentheses, we will denote
ϕ(g) by ϕg. Then we can define a new operation ∗ on the set G×H, given by

(a, p) ∗ (b, q) = (ab, ϕb(p)q) .

With this operation, the set G×H is denoted G×ϕ H and called the semidirect product of G and
H by ϕ. You can check that ∗ is an associative operation, that (eG, eH) acts as an identity, that
the inverse of (a, p) is (a−1, ϕ−1a (p−1), that the functions

G→ G×ϕ H : g 7→ (g, eH) , H → G×ϕ H : h 7→ (eG, H)

are group homomorphisms, that the image of the second is a normal subgroup of G×ϕH, and that
conjugating an (eG, h) by an (g, eH) gives (eG, ϕg(h)).

If ϕ is the trivial homomorphism G→ Aut(H), sending every element to the identity function
on H, the semidirect product is just the ordinary direct product G×H.

Applications: (1) If q is an odd prime, then q− 1 is an element of U(Zq) (which is isomorphic to
Aut(Zq)) of (multiplicative) order 2, so there is a homomorphism Z2 → Aut(Zq) given by: 0 goes
to the identity automorphism ϕ0 on Zq, and 1 goes to the automorphism ϕ1 given by a 7→ (q− 1)a.
The semidirect product of Z2 and Zq with the homomorphism ϕ : Z2 → Aut(Zq) is (isomorphic to)
Dq: 〈f〉 is cyclic of order q and normal, and conjugation by g is an automorphism of 〈f〉 of order 2.

(2) Because 7 divides 29 − 1, we should be able to construct a non-abelian group of order
7 · 29 = 203: The group U(Z29) is cyclic of order 28, so there must be elements of order 7. By
trial and error, we find that an element in U(Z29) of (multiplicative) order 7 is 16. (So is 7, but
I don’t want to use the same number in two contexts if I can avoid it.) Thus, a homomorphism
ϕ : Z7 → Aut(Z29) determined by taking 1 to the automorphism ϕ1 of Z29 given by a 7→ 16a. The
desired group is the semidirect product Z7 ×ϕ Z29.

(3) I constructed the group used on Exam 3 as a semidirect product: Reversing the coordinates
is an automorphism of Z3×Z3 that is its own inverse, so there is a natural homomorphism from Z2

into Aut(Z3×Z3), taking 1 to this automorphism. We get a semidirect product of Z2 and Z3×Z3.
Then I simplified the notation: a for (0, (1, 0)), b for (0, (0, 1)) and k for (1, (0, 0)).)
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