
Section 16: Rings

Let’s get off of the topic of groups, which is strongly connected to number theory, and move on
to another algebraic structure, where there is a closer connection to high school algebra:

Def: A ring is a set R with two operations, denoted + and · (or juxtaposition) in which the
following properties hold:

• (R,+) is an abelian group;

• · is an associative operation on R; and

• the two “distributive laws” hold: For all a, b, c in R,

a(b+ c) = ab+ ac and (b+ c)a = ba+ ca .

If · is commutative, then R is a commutative ring. There must be an identity for +, denoted as
usual by 0 or 0R, and inverses for this operation are denoted with negative signs. If there is an
identity for ·, it is called a unity, usually denoted 1 or 1R, and R is called a ring with unity.

Notice that we are assuming the usual precedence of operations: operations inside parentheses
are done first, but otherwise multiplications are done, left to right, before additions, also left to
right. This usually isn’t a problem, but there are cases where parentheses should be added for
clarity. One example is the ring P(X), consisting of all subsets of a set X, where addition is
symmetric difference 4 and multiplication is intersection ∩. One of the distributive laws reads:
For all A,B,C ⊆ X,

A ∩ (B4C) = A ∩B4A ∩ C ;

and the right side is nearly incomprehensible without parentheses.
Of course, we know some rings immediately: Z, Q, R and C. The additive subgroups nZ

of Z are commutative rings, but they only have unity if n = ±1, i.e., if nZ = Z. The additive
groups Zn, with multiplication mod n, are commutative rings with unity, and their subgroups dZn

are commutative rings, usually without unity (though some will surprise by having unities where
they are not expected; see the description of “idempotents” below). The basic example of a non-
commutative ring is Mn×n(R). Other good examples of commutative rings with unity are R[x, y],
the family of all polynomials with real coefficients in the variables x, y; and F(S), the family of all
functions from the set S into R, with pointwise operations: f + g and fg are defined on S by, for
all s in S,

(f + g)(s) = f(s) + g(s) and (fg)(s) = f(s)g(s) .

If S has various structures, they can be used to define subrings of F(S) — for example, if S is
the interval [a, b] on the real line, then we can study the ring of continuous functions on [a, b], or
differentiable functions on [a, b], or . . .

Terrible Example: Let G be an additive abelian group, and let N be the set of all functions
G→ G, with the operations of pointwise addition and composition for multiplication. Then one of
the distributive laws works but the other doesn’t: Let α, β, γ : G → G; then for all x in G, we do
have

((β + γ) ◦ α)(x) = (β + γ)(α(x)) = β(α(x)) + γ(α(x))

= (β ◦ α)(x) + (γ ◦ α)(x) = (β ◦ α+ γ ◦ α)(x)
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so (β + γ) ◦ α = β ◦ α+ γ ◦ α, but

(α ◦ (β + γ))(x) = α((β + γ)(x)) = α((β(x) + γ(x)) ,

which, because α may not a homomorphism, need not be equal to

(α ◦ β + α ◦ γ)(x) = α(β(x)) + α(γ(x)) ,

so we may not have α ◦ (β + γ) = α ◦ β + α ◦ γ. This N is an example of a near-ring, a concept
that I promise I will not mention again.

Even if there is a unity, elements other than the unity may not have multiplicative inverses (if
a has one, it is called a unit, and the inverse is denoted as usual by a−1), and cancellation from a
multiplication may not be possible. For instance, in Z6, only 1 and 5 have (multiplicative) inverses,
and even though 2 · 1 = 2 · 4, we don’t have 1 = 4. Because (R,+) is an additive abelian group, the
laws of “exponents” hold, but they become laws of coefficients: For n,m ∈ Z and a, b ∈ R, we have

(n+m)a = na+ma , n(ma) = (nm)a , n(a+ b) = na+ nb

In particular, 0Za = 0R and (−n)a = n(−a) = −(na). Positive integer exponents are used for
repeated multiplication, as usual, and behave just as in a group; but we can only have 0 as an
exponent in a ring with unity, and negative integer exponents only make sense for units. But at
least some familiar facts from high school algebra hold in any ring. The first parts of the following
proposition just show how addition and multiplication connect in any ring (so the distributive laws,
the only connection we have between the operations, are used repeatedly):

Prop and Def: Let R be a ring. Then:

(a) For all a in R, 0R · a = a · 0R = 0R.

(b) For all a, b in R, (−a)b = a(−b) = −(ab).

(c) For any integer n and a, b in R, (na)b = a(nb) = n(ab).

(d) We define subtraction to be addition of the additive inverse (the negative): a− b = a+ (−b).
Then multiplication distributes over subtraction: For all a, b, c in R,

a(b− c) = ab− ac and (b− c)a = ba− ca .

(e) The FOIL method works: (a+ b)(c+ d) = ac+ ad+ bc+ bd (but in a noncommutative ring,
the order is important in the middle terms).

Pf: (a) We have aa+ 0R = aa = (a+ 0R)a = aa+ 0Ra, and we can cancel terms from an addition
(because R is a group under addition), so 0R = 0Ra. Similarly a0R = 0R.

(b) We have ab + (−a)b = (a + (−a))b = 0b = 0, so (−a)b is the negative of ab. Similarly
a(−b) = −(ab).

(c) If n is positive, this is just the distributive law and induction. For the case n = 0, we note
first that, in (a), 0 means the additive identity in R, not the integer 0. But our convention is that,
in a multiplicative group, a0 means the identity in the group; when the operation is addition, the
exponent becomes a coefficient and the identity in the group is denoted 0; so 0Za = 0R is that
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convention. With that convention, the case n = 0 is just (a). For n < 0, we use the positive case
and (b).

(d)
a(b− c) = a(b+ (−c)) = ab+ a(−c) = ab+ (−(ac)) = ab− ac ,

and similarly (b− c)a = ba− ca.
(e) Easy.//

More definitions:

Def: Let R be a ring and a be an element of R.

• a is nilpotent if some positive power of a is 0.

• a is idempotent if a2 = a.

• a is a zero-divisor if there is a nonzero element b of R for which ab = 0.

• R is a(n integral) domain if it is commutative with unity and the only zero-divisor in R is 0
itself (or equivalently nonzero elements of R can be cancelled from a multiplication).

• R is a division ring if it has unity and every nonzero element is a unit (i.e., if R − {0} is a
group under multiplication).

• R is a field if it is a commutative division ring.

Pf of the equivalence in the def of integral domain: Suppose 0 is the only zero-divisor in R and
ab = ac where a 6= 0. Then 0 = ab − ac = a(b − c), and because a is not a zero-divisor, we
must have b − c = 0, i.e., b = c. Conversely, suppose we can cancel nonzero elements of R from a
multiplication, and that ab = 0 where a 6= 0. Then we have ab = a0, so by cancellation b = 0; i.e.,
a is not a zero-divisor.//

We can find inside various Zn’s elements that are nilpotents, idempotents and zero-divisors,
provided n is not prime. For example, in Z24, 6 and 12 are nilpotent (because 63 = 0 and 123 = 0);
9 and 16 are idempotents (because 92 = 9 and 162 = 16 — note that 9 = 1−16); and every element
that is not relatively prime to 24 is a zero-divisor (for instance, 9 · 8 = 0).

There are not many interesting examples of division rings; one is the ring of quaternions: Take
the elements I, J,K,L of GL(2,C) that gave us Q8; and form

IHI = {aI + bJ + cK + dL : a, b, c, d ∈ R} =

{(
z w
−w z

)
: z, w ∈ C

}
,

a subring of M2×2(C) (the overline denotes complex conjugate: x+ yi = x− yi for x, y in R). The
rings Q, R and C are fields, and Z is an integral domain that is not a field. Other integral domains
that are not fields are R[x, y] and the ring of “Gaussian integers” Z[i] = {a+ bi : a, b ∈ Z}. Others
are Z[

√
2] = {a+ b

√
2 : a, b ∈ Z} and Z[ 3

√
2] = {a+ b 3

√
2 + c( 3

√
2)2 : a, b, c ∈ Z}.

Just as with groups, we can form the direct product of two rings (or two copies of the same
ring); the multiplication on R × S is coordinatewise, like addition: (a, c)(b, d) = (ab, cd). (The
text claims that in the context of rings the direct product is called the direct sum and denoted
R ⊕ S, but that has not been my experience.) If R and S both have unities, then (1R, 1S) is a
unity for the direct product, and (1R, 0S) and (0R, 1S) are idempotents in the center of the direct
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product. Conversely, if e is a central idempotent in a ring R with unity, then 1 − e is another
central idempotent, the ideals eR and (1− e)R are also rings with unities e and 1− e respectively,
and R is isomorphic to the direct product eR× (1− e)R (though we haven’t defined isomorphisms
of rings yet — you can probably guess what that means). Notice that, even if R and S are integral
domains, R× S has many zero-divisors: (r, 0)(0, s) = (0, 0).

Aside: In my experience, the difference between direct product and direct sum is as follows: Let
{Ai : i ∈ I} be a collection of groups or rings. Here I is the “index set” of the family; it may be just
{1, 2}, or it may be {1, 2, . . . , n} for any positive integer n, or perhaps N — the infinite sequences
in calculus are indexed by N — or R, or any other set. The point is that there is an Ai for each i in
I. Then the direct product

∏
i∈I Ai is the set of “I-tuples”, i.e., arrays (ai)i∈I of elements, where

the coordinate ai in the array comes out of Ai, for each i in I. The operation(s) on this product
are defined coordinate-wise:

(ai)i∈I # (bi)i∈I = (ai #i bi)i∈I

for any (ai)i∈I , (bi)i∈I in the product, where #i is the operation in Ai and # is the operation being
defined on the product. And the direct sum

⊕
i∈I Ai is the subgroup of the product consisting

of the “I-tuples” (ai)i∈I in which all but finitely many of the ai’s are the zero element of their
respective Ai. Thus, the direct product and the direct sum are the same if I is finite. (So the text
is not wrong in rewriting R×S as R⊕S; I just haven’t seen it done that way.) But if I is infinite,
the direct sum is much smaller — for instance, if I and each Ai are countably infinite, then the
direct sum is still countably infinite, while the direct product is uncountable.

The text proves the nice fact that a finite integral domain is a field. Here is the proof: Let
a be a nonzero element of the finite integral domain R. Then the function R → R : r 7→ ar is
one-to-one, because a can be cancelled; and because R is finite, the function is also onto R; so there
is an element r of R for which ar = 1, i.e., r is a multiplicative inverse of a.

The book also talks about Wedderburn’s Theorem, which proves that every finite division ring
is commutative, i.e., is a field. I’ve put a proof of this result online — it is not too long (about
one-and-a-half pages), but it is very odd, using several unexpected results.
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