
Section 17: Subrings, Ideals and Quotient Rings

The first definition should not be unexpected:

Def: A nonempty subset S of a ring R is a subring of R if S is closed under addition, negatives (so
it’s an additive subgroup) and multiplication; in other words, S inherits operations from R that
make it a ring in its own right.

Naturally, Z is a subring of Q, which is a subring of R, which is a subring of C. Also, R is a
subring of R[x], which is a subring of R[x, y], etc. The additive subgroups nZ of Z are subrings of Z
— the product of two multiples of n is another multiple of n. For the same reason, the subgroups
〈d〉 in the various Zn’s are subrings. Most of these latter subrings do not have unities. But we
know that, in the ring Z24, 9 is an idempotent, as is 16 = 1 − 9. In the subrings 〈9〉 and 〈16〉 of
Z24, 9 and 16 respectively are unities. The subgroup 〈1/2〉 of Q is not a subring of Q because it is
not closed under multiplication: (1/2)2 = 1/4 is not an integer multiple of 1/2.

Of course the immediate next question is which subrings can be used to form factor rings, as
normal subgroups allowed us to form factor groups. Because a ring is commutative as an additive
group, normality is not a problem; so we are really asking when does multiplication of additive
cosets S + a, done by multiplying their representatives, (S + a)(S + b) = S + (ab), make sense?
Again, it’s a question of whether this operation is well-defined: If S + a = S + c and S + b = S + d,
what must be true about S so that we can be sure S + (ab) = S + (cd)? Using the definition of
cosets: If a− c, b− d ∈ S, what must be true about S to assure that ab− cd ∈ S? We need to have
the following element always end up in S:

ab− cd = ab− ad + ad− cd = a(b− d) + (a− c)d .

Because b − d and a − c can be any elements of S (and either one may be 0), and a, d can be
any elements of R, the property required to assure that this element is in S, and hence that this
multiplication of cosets is well-defined, is that, for all s in S and r in R, sr and rs are also in S. If
this condition holds, then we don’t need to assume separately that the product of two elements of
S is again in S, so:

Def and Prop: An additive subgroup A of a ring R is an ideal in R if it “captures multiplication”,
i.e., for all a in A and r in R, ar, ra ∈ R. If A is an ideal in R, then the multiplication (A+r)(A+s) =
A + (rs) is well-defined on the additive factor group R/A and makes R/A a ring, called the factor
ring of R by A.

Pf: Suppose A is an additive subgroup of R that captures multiplication, and that A + r = A + u
and A + s = A + v, i.e., r − u, s− v ∈ A. Then

rs− uv = rs− rv + rv − uv = r(s− v) + (r − u)v ∈ A ,

so A + rs = A + uv. Checking that this multiplication of cosets is associative and satisfies the
distributive laws is easy.//

Some people also call R/A the quotient ring of R by A, but there is another meaning of quotient
ring, so I will try to avoid using that term. Two obvious ideals in any ring R are R itself and the
set {0R}, which we also denote by 0 if there is no confusion. Of course a “ring homomorphism” is
a function ϕ from one ring R to another ring T that respects both addition and multiplication. It
is easy to check that the kernel of a ring homomorphism (still, the set of elements in R that are
taken to 0T by ϕ) is an ideal in R.
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Exs: (1) Though Z is a subring of Q, it is not an ideal: 1 ∈ Z, so if Z were to capture multiplication
by elements of Q, then all of Q would be in Z. More generally, if a ring R with unity has an ideal
A that contains one unit in R, then A = R. (Pf: If a in A has a multiplicative inverse a−1 in R,
then for all r in R, r = a(a−1r) ∈ A because A captures multiplication.//)

(2) The subset

S =

{(
a b
0 d

)
: a, b, c ∈ R

}
of the ring M2×2(R) is a subring, but it is not an ideal because if a 6= 0, then(

0 1
1 0

)(
a b
0 d

)
=

(
0 d
a b

)
/∈ S .

General Exs: Let R be a commutative ring with unity. Then:

• for any subset X of R, the family of all finite sums
∑n

i=1 rixi, where each ri is in R and
each xi is in X, is an ideal, the smallest ideal that contains the set X. It is called “the ideal
generated by X.” In particular, if X = {x1, x2, . . . , xm} is finite, then we can write this ideal
in the form Rx1 +Rx2 + · · ·+Rxm. If X is a single element, Rx is called a “principal ideal.”

• for any subset X of R, the set of all elements r of R for which rx = 0 for every element x of
X is an ideal of R, called the “annihilator of X” and denoted ann(X) or 0 : X.

• (generalizing the last example) for any subset X of R and ideal A of R, {r ∈ R : rx ∈ A∀x ∈
X} is an ideal of R, denoted A : X.

• if A,B are ideals in R, then A + B = {a + b : a ∈ A, b ∈ B} and A ∩B are also ideals in R.

Ex: Recall from high school algebra that a real number r is the root of a polynomial p(x) if and
only if x− r is a factor of p(x). Addition and multiplication of polynomials are defined as they are
so that evaluation of a polynomial by replacing the variable(s) with some real number(s) respects
the operations, i.e., is a ring homomorphism. Thus, for r in R

ker(εr : R[x]→ R : p(x) 7→ p(r)) = {p(x) ∈ R[x] : p(r) = 0}
= {p(x) ∈ R[x] : x− r is a factor of p(x)}
= R[x](x− r) ,

a principal ideal in R[x].
If p is a prime integer, then a product of two integers is a multiple of p only if one of them is a

multiple of p. This fact is the inspiration for the first term in the next definition.

Def and Prop: Let R be a commutative ring with unity, and A be a proper ideal in R.

(a) The ideal A is a prime ideal iff, for r, s ∈ R, rs ∈ A only if r ∈ A or s ∈ A, or equivalently iff
R/A is an integral domain.

(b) The ideal A is a maximal ideal iff there is no ideal properly between A and R, or equivalently
iff R/A is a field.
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Pf of equivalences: (a) A is a prime ideal ⇐⇒ (rs ∈ A⇒ r ∈ A or s ∈ A)
⇐⇒ (A + rs = A⇒ A + r = A or A + s = A)
⇐⇒ R/A has no nonzero zerodivisors
⇐⇒ R/A is an integral domain

(b) A is a maximal ideal ⇐⇒ ∀ r ∈ R−A, A + Rr = R
⇐⇒ ∀ r ∈ R−A, 1 ∈ A + Rr
⇐⇒ ∀ r ∈ R−A, ∃ a ∈ A, s ∈ R such that 1 = a + rs
⇐⇒ ∀ r ∈ R−A, ∃ s ∈ A such that A + 1 = (A + r)(A + s)
⇐⇒ every nonzero element of R/A is a unit
⇐⇒ R/A is a field

Because a field is an integral domain, it follows that a maximal ideal is prime. In Z, the ideals
generated by prime integers are, in fact, maximal and not just prime, but {0} is a prime ideal
that is not maximal. A more interesting example is in R[x, y]: xR[x, y] is a prime ideal that is not
maximal — R[x, y]/xR[x, y] is isomorphic (next section!) to R[y], which is an integral domain that
is not a field. (xR[x, y] ⊆ xR[x, y] + yR[x, y], which is a maximal ideal.)
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