Section 17: Subrings, Ideals and Quotient Rings

The first definition should not be unexpected:
Def: A nonempty subset S of a ring R is a subring of R if S is closed under addition, negatives (so it's an additive subgroup) and multiplication; in other words, S inherits operations from R that make it a ring in its own right.

Naturally, \mathbb{Z} is a subring of \mathbb{Q}, which is a subring of \mathbb{R}, which is a subring of \mathbb{C}. Also, \mathbb{R} is a subring of $\mathbb{R}[x]$, which is a subring of $\mathbb{R}[x, y]$, etc. The additive subgroups $n \mathbb{Z}$ of \mathbb{Z} are subrings of \mathbb{Z} - the product of two multiples of n is another multiple of n. For the same reason, the subgroups $\langle d\rangle$ in the various \mathbb{Z}_{n} 's are subrings. Most of these latter subrings do not have unities. But we know that, in the ring $\mathbb{Z}_{24}, 9$ is an idempotent, as is $16=1-9$. In the subrings $\langle 9\rangle$ and $\langle 16\rangle$ of $\mathbb{Z}_{24}, 9$ and 16 respectively are unities. The subgroup $\langle 1 / 2\rangle$ of \mathbb{Q} is not a subring of \mathbb{Q} because it is not closed under multiplication: $(1 / 2)^{2}=1 / 4$ is not an integer multiple of $1 / 2$.

Of course the immediate next question is which subrings can be used to form factor rings, as normal subgroups allowed us to form factor groups. Because a ring is commutative as an additive group, normality is not a problem; so we are really asking when does multiplication of additive cosets $S+a$, done by multiplying their representatives, $(S+a)(S+b)=S+(a b)$, make sense? Again, it's a question of whether this operation is well-defined: If $S+a=S+c$ and $S+b=S+d$, what must be true about S so that we can be sure $S+(a b)=S+(c d)$? Using the definition of cosets: If $a-c, b-d \in S$, what must be true about S to assure that $a b-c d \in S$? We need to have the following element always end up in S :

$$
a b-c d=a b-a d+a d-c d=a(b-d)+(a-c) d .
$$

Because $b-d$ and $a-c$ can be any elements of S (and either one may be 0), and a, d can be any elements of R, the property required to assure that this element is in S, and hence that this multiplication of cosets is well-defined, is that, for all s in S and r in $R, s r$ and $r s$ are also in S. If this condition holds, then we don't need to assume separately that the product of two elements of S is again in S, so:

Def and Prop: An additive subgroup A of a ring R is an ideal in R if it "captures multiplication", i.e., for all a in A and r in $R, a r, r a \in R$. If A is an ideal in R, then the multiplication $(A+r)(A+s)=$ $A+(r s)$ is well-defined on the additive factor group R / A and makes R / A a ring, called the factor ring of R by A.

Pf: Suppose A is an additive subgroup of R that captures multiplication, and that $A+r=A+u$ and $A+s=A+v$, i.e., $r-u, s-v \in A$. Then

$$
r s-u v=r s-r v+r v-u v=r(s-v)+(r-u) v \in A
$$

so $A+r s=A+u v$. Checking that this multiplication of cosets is associative and satisfies the distributive laws is easy.//

Some people also call R / A the quotient ring of R by A, but there is another meaning of quotient ring, so I will try to avoid using that term. Two obvious ideals in any ring R are R itself and the set $\left\{0_{R}\right\}$, which we also denote by 0 if there is no confusion. Of course a "ring homomorphism" is a function φ from one ring R to another ring T that respects both addition and multiplication. It is easy to check that the kernel of a ring homomorphism (still, the set of elements in R that are taken to 0_{T} by φ) is an ideal in R.

Exs: (1) Though \mathbb{Z} is a subring of \mathbb{Q}, it is not an ideal: $1 \in \mathbb{Z}$, so if \mathbb{Z} were to capture multiplication by elements of \mathbb{Q}, then all of \mathbb{Q} would be in \mathbb{Z}. More generally, if a ring R with unity has an ideal A that contains one unit in R, then $A=R$. ($P f$: If a in A has a multiplicative inverse a^{-1} in R, then for all r in $R, r=a\left(a^{-1} r\right) \in A$ because A captures multiplication.//)
(2) The subset

$$
S=\left\{\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right): a, b, c \in \mathbb{R}\right\}
$$

of the ring $M_{2 \times 2}(\mathbb{R})$ is a subring, but it is not an ideal because if $a \neq 0$, then

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
0 & d \\
a & b
\end{array}\right) \notin S .
$$

General Exs: Let R be a commutative ring with unity. Then:

- for any subset X of R, the family of all finite sums $\sum_{i=1}^{n} r_{i} x_{i}$, where each r_{i} is in R and each x_{i} is in X, is an ideal, the smallest ideal that contains the set X. It is called "the ideal generated by X." In particular, if $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is finite, then we can write this ideal in the form $R x_{1}+R x_{2}+\cdots+R x_{m}$. If X is a single element, $R x$ is called a "principal ideal."
- for any subset X of R, the set of all elements r of R for which $r x=0$ for every element x of X is an ideal of R, called the "annihilator of X " and denoted $\operatorname{ann}(X)$ or $0: X$.
- (generalizing the last example) for any subset X of R and ideal A of $R,\{r \in R: r x \in A \forall x \in$ $X\}$ is an ideal of R, denoted $A: X$.
- if A, B are ideals in R, then $A+B=\{a+b: a \in A, b \in B\}$ and $A \cap B$ are also ideals in R.

Ex: Recall from high school algebra that a real number r is the root of a polynomial $p(x)$ if and only if $x-r$ is a factor of $p(x)$. Addition and multiplication of polynomials are defined as they are so that evaluation of a polynomial by replacing the variable(s) with some real number(s) respects the operations, i.e., is a ring homomorphism. Thus, for r in \mathbb{R}

$$
\begin{aligned}
\operatorname{ker}\left(\varepsilon_{r}: \mathbb{R}[x] \rightarrow \mathbb{R}: p(x) \mapsto p(r)\right) & =\{p(x) \in \mathbb{R}[x]: p(r)=0\} \\
& =\{p(x) \in \mathbb{R}[x]: x-r \text { is a factor of } p(x)\} \\
& =\mathbb{R}[x](x-r),
\end{aligned}
$$

a principal ideal in $\mathbb{R}[x]$.
If p is a prime integer, then a product of two integers is a multiple of p only if one of them is a multiple of p. This fact is the inspiration for the first term in the next definition.

Def and Prop: Let R be a commutative ring with unity, and A be a proper ideal in R.
(a) The ideal A is a prime ideal iff, for $r, s \in R$, $r s \in A$ only if $r \in A$ or $s \in A$, or equivalently iff R / A is an integral domain.
(b) The ideal A is a maximal ideal iff there is no ideal properly between A and R, or equivalently iff R / A is a field.

Pf of equivalences: (a) A is a prime ideal $\Longleftrightarrow(r s \in A \Rightarrow r \in A$ or $s \in A)$
$\Longleftrightarrow(A+r s=A \Rightarrow A+r=A$ or $A+s=A)$
$\Longleftrightarrow R / A$ has no nonzero zerodivisors
$\Longleftrightarrow R / A$ is an integral domain
(b) A is a maximal ideal $\Longleftrightarrow \forall r \in R-A, A+R r=R$
$\Longleftrightarrow \forall r \in R-A, 1 \in A+R r$
$\Longleftrightarrow \forall r \in R-A, \exists a \in A, s \in R$ such that $1=a+r s$
$\Longleftrightarrow \forall r \in R-A, \exists s \in A$ such that $A+1=(A+r)(A+s)$
\Longleftrightarrow every nonzero element of R / A is a unit
$\Longleftrightarrow R / A$ is a field
Because a field is an integral domain, it follows that a maximal ideal is prime. In \mathbb{Z}, the ideals generated by prime integers are, in fact, maximal and not just prime, but $\{0\}$ is a prime ideal that is not maximal. A more interesting example is in $\mathbb{R}[x, y]: x \mathbb{R}[x, y]$ is a prime ideal that is not maximal - $\mathbb{R}[x, y] / x \mathbb{R}[x, y]$ is isomorphic (next section!) to $\mathbb{R}[y]$, which is an integral domain that is not a field. $(x \mathbb{R}[x, y] \subseteq x \mathbb{R}[x, y]+y \mathbb{R}[x, y]$, which is a maximal ideal.)

