
Theorem:
∞∑

k=1

1
k2

=
π2

6
.

Euler’s mnemonic: Suppose the polynomial p(x) has roots a1, a2 . . . , an and constant term equal
to 1. Then we have

p(x) = (1− x

a1
)(1− x

a2
) · · · (1− x

an
) .

What is true of polynomials must also be true of power series! (Wrong: If it were right, ex, having
no roots, must be a constant.) So because the roots of (sinx)/x are ±kπ for each positive integer k,
we have

sinx

x
= (1− x

π
)(1− x

−π
)(1− x

2π
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−2π
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3π
)(1− x

−3π
) · · ·

1− x2

3!
+

x4

5!
+ · · · = (1− x2

π2
)(1− x2

4π2
)(1− x2

9π2
) · · ·

Expanding the product on the right side shows that the coefficient of x2 is −
∑

(1/(k2π2)). On the
left, the coefficient of x2 is −1/6. Equating these two gives the desired result.

Proof: Consider first

sin
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2
− sin
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2

= sin kx cos
1
2
x + sin

1
2
x cos kx
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1
2
x + sin

1
2
x cos kx

= 2 sin
1
2
x cos kx .

Thus, using the fact that we have a telescoping sum, we get

sin
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2
− sin

x

2
=

n∑
k=1

(
sin

(2k + 1)x
2

− sin
(2k − 1)x

2

)

= 2 sin
x

2

(
n∑

k=1

cos kx

)
.

Define

fn(x) =
1
2

+
n∑

k=1

cos kx ;

so that, by the last computation, we have, except at x = 2kπ,

fn(x) =
sin

(2k + 1)x
2

2 sin
x

2

.

Now define

En =
∫ π

0
xfn(x) dx =

π2

4
+

n∑
k=1

(−1)k − 1
k2

.

Thus,

E2n−1 =
π2

4
−

n∑
k=1

2
(2k − 1)2

.



But in view of the other way of writing fn(x) (valid on the interval [0, π] except for the right
endpoint), we can also write

E2n−1 =
∫ π

0

x/2
sin(x/2)

sin
(4n− 1)x

2
dx

Using integration by parts with

u = h(x) =


x/2

sin(x/2)
if 0 < x ≤ π

1 if x = 0

and dv = sin
(4n− 1)x

2
dx (you should check that h′(0) = 0 = lim

x→0
h′(x), to be sure that h′ is

continuous), we get

E2n−1 =
[ −2
4n− 1

h(x) cos
(4n− 1)x

2

]π
0

+
2

4n− 1

∫ π

0
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(4n− 1)x
2

dx

=
2

4n− 1

[
1 +

∫ π

0
h′(x) cos

(4n− 1)x
2

dx

]
.

Now we have∣∣∣∣∫ π

0
h′(x) cos

(4n− 1)x
2

dx

∣∣∣∣ ≤ ∫ π

0
|h′(x)|

∣∣∣∣cos
(4n− 1)x

2

∣∣∣∣ dx ≤
∫ π

0
|h′(x)| dx

and the last expression does not change with n. So we see that E2n−1 is the fraction 2
4n−1 times a

quantity that is no larger than 1 +
∫ π
0 |h′(x)|dx; and hence, as n → ∞, we have that E2n−1 → 0.

Therefore,
π2

4
=

∞∑
k=1

2
(2k − 1)2

.

But by breaking up the original sum into odd and even terms, we also have

∞∑
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1
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=
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1
(2k)2

+
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1
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1
4
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1
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+
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8
,

so we get
3
4

∞∑
k=1

1
k2

=
π2

8

and the result follows.


