Theorem:
$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Euler's mnemonic: Suppose the polynomial p(x) has roots a_1, a_2, \ldots, a_n and constant term equal to 1. Then we have

$$p(x) = (1 - \frac{x}{a_1})(1 - \frac{x}{a_2}) \cdots (1 - \frac{x}{a_n})$$
.

What is true of polynomials must also be true of power series! (Wrong: If it were right, e^x , having no roots, must be a constant.) So because the roots of $(\sin x)/x$ are $\pm k\pi$ for each positive integer k, we have

$$\frac{\sin x}{x} = (1 - \frac{x}{\pi})(1 - \frac{x}{-\pi})(1 - \frac{x}{2\pi})(1 - \frac{x}{-2\pi})(1 - \frac{x}{3\pi})(1 - \frac{x}{3\pi})(1 - \frac{x}{-3\pi})\cdots$$

$$1 - \frac{x^2}{3!} + \frac{x^4}{5!} + \cdots = (1 - \frac{x^2}{\pi^2})(1 - \frac{x^2}{4\pi^2})(1 - \frac{x^2}{9\pi^2})\cdots$$

Expanding the product on the right side shows that the coefficient of x^2 is $-\sum(1/(k^2\pi^2))$. On the left, the coefficient of x^2 is -1/6. Equating these two gives the desired result.

Proof: Consider first

$$\sin \frac{(2k+1)x}{2} - \sin \frac{(2k-1)x}{2} = \sin kx \cos \frac{1}{2}x + \sin \frac{1}{2}x \cos kx - \sin kx \cos \frac{1}{2}x + \sin \frac{1}{2}x \cos kx = 2 \sin \frac{1}{2}x \cos kx .$$

Thus, using the fact that we have a telescoping sum, we get

$$\sin\frac{(2n+1)x}{2} - \sin\frac{x}{2} = \sum_{k=1}^{n} \left(\sin\frac{(2k+1)x}{2} - \sin\frac{(2k-1)x}{2} \right)$$
$$= 2\sin\frac{x}{2} \left(\sum_{k=1}^{n} \cos kx \right) .$$

Define

$$f_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos kx ;$$

so that, by the last computation, we have, except at $x = 2k\pi$,

$$f_n(x) = rac{\sinrac{(2k+1)x}{2}}{2\sinrac{x}{2}}$$

Now define

$$E_n = \int_0^{\pi} x f_n(x) \, dx = \frac{\pi^2}{4} + \sum_{k=1}^n \frac{(-1)^k - 1}{k^2}$$

Thus,

$$E_{2n-1} = \frac{\pi^2}{4} - \sum_{k=1}^n \frac{2}{(2k-1)^2}$$
.

But in view of the other way of writing $f_n(x)$ (valid on the interval $[0, \pi]$ except for the right endpoint), we can also write

$$E_{2n-1} = \int_0^\pi \frac{x/2}{\sin(x/2)} \sin\frac{(4n-1)x}{2} \, dx$$

Using integration by parts with

$$u = h(x) = \begin{cases} \frac{x/2}{\sin(x/2)} & \text{if } 0 < x \le \pi \\ 1 & \text{if } x = 0 \end{cases}$$

and $dv = \sin \frac{(4n-1)x}{2} dx$ (you should check that $h'(0) = 0 = \lim_{x \to 0} h'(x)$, to be sure that h' is continuous), we get

$$E_{2n-1} = \left[\frac{-2}{4n-1}h(x)\cos\frac{(4n-1)x}{2}\right]_0^\pi + \frac{2}{4n-1}\int_0^\pi h'(x)\cos\frac{(4n-1)x}{2}\,dx$$
$$= \frac{2}{4n-1}\left[1+\int_0^\pi h'(x)\cos\frac{(4n-1)x}{2}\,dx\right].$$

Now we have

$$\left| \int_0^\pi h'(x) \cos \frac{(4n-1)x}{2} \, dx \right| \le \int_0^\pi |h'(x)| \left| \cos \frac{(4n-1)x}{2} \right| \, dx \le \int_0^\pi |h'(x)| \, dx$$

and the last expression does not change with n. So we see that E_{2n-1} is the fraction $\frac{2}{4n-1}$ times a quantity that is no larger than $1 + \int_0^{\pi} |h'(x)| dx$; and hence, as $n \to \infty$, we have that $E_{2n-1} \to 0$. Therefore,

$$\frac{\pi^2}{4} = \sum_{k=1}^{\infty} \frac{2}{(2k-1)^2} \; .$$

But by breaking up the original sum into odd and even terms, we also have

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=1}^{\infty} \frac{1}{(2k)^2} + \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} + \frac{\pi^2}{8} ,$$

so we get

$$\frac{3}{4}\sum_{k=1}^{\infty}\frac{1}{k^2} = \frac{\pi^2}{8}$$

and the result follows.