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Euler’s mnemonic: Suppose the polynomial p(x) has roots aj,as...,a, and constant term equal
to 1. Then we have . .
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What is true of polynomials must also be true of power series! (Wrong: If it were right, e*, having
no roots, must be a constant.) So because the roots of (sinz)/x are £kw for each positive integer k,

we have
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Expanding the product on the right side shows that the coefficient of 22 is — 3_(1/(k?72)). On the
left, the coefficient of x? is —1/6. Equating these two gives the desired result.

Proof: Consider first
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Thus, using the fact that we have a telescoping sum, we get
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so that, by the last computation, we have, except at x = 2k,
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Thus,



But in view of the other way of writing f,(z) (valid on the interval [0,7] except for the right
endpoint), we can also write
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Using integration by parts with

x/2
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and dv = sin 5 dz (you should check that A'(0) = 0 = hH(l)h (x), to be sure that h' is
continuous), we get
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Now we have
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and the last expression does not change with n. So we see that Fa,_1 is the fraction ;=5 times a
quantity that is no larger than 1+ [ |#’(x)|dz; and hence, as n — oo, we have that Ea,_1 — 0.

Therefore,
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But by breaking up the original sum into odd and even terms, we also have

> 1 1 s 1 11 72
p— _|,_ — 7_’_77
LTl mop i e s

SO we get
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and the result follows.



