Theorem: $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.
Euler's mnemonic: Suppose the polynomial $p(x)$ has roots $a_{1}, a_{2} \ldots, a_{n}$ and constant term equal to 1 . Then we have

$$
p(x)=\left(1-\frac{x}{a_{1}}\right)\left(1-\frac{x}{a_{2}}\right) \cdots\left(1-\frac{x}{a_{n}}\right) .
$$

What is true of polynomials must also be true of power series! (Wrong: If it were right, e^{x}, having no roots, must be a constant.) So because the roots of $(\sin x) / x$ are $\pm k \pi$ for each positive integer k, we have

$$
\begin{aligned}
\frac{\sin x}{x} & =\left(1-\frac{x}{\pi}\right)\left(1-\frac{x}{-\pi}\right)\left(1-\frac{x}{2 \pi}\right)\left(1-\frac{x}{-2 \pi}\right)\left(1-\frac{x}{3 \pi}\right)\left(1-\frac{x}{-3 \pi}\right) \cdots \\
1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\cdots & =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right) \cdots
\end{aligned}
$$

Expanding the product on the right side shows that the coefficient of x^{2} is $-\sum\left(1 /\left(k^{2} \pi^{2}\right)\right)$. On the left, the coefficient of x^{2} is $-1 / 6$. Equating these two gives the desired result.

Proof: Consider first

$$
\begin{aligned}
\sin \frac{(2 k+1) x}{2}-\sin \frac{(2 k-1) x}{2}= & \sin k x \cos \frac{1}{2} x+\sin \frac{1}{2} x \cos k x \\
& -\sin k x \cos \frac{1}{2} x+\sin \frac{1}{2} x \cos k x \\
= & 2 \sin \frac{1}{2} x \cos k x
\end{aligned}
$$

Thus, using the fact that we have a telescoping sum, we get

$$
\begin{aligned}
\sin \frac{(2 n+1) x}{2}-\sin \frac{x}{2} & =\sum_{k=1}^{n}\left(\sin \frac{(2 k+1) x}{2}-\sin \frac{(2 k-1) x}{2}\right) \\
& =2 \sin \frac{x}{2}\left(\sum_{k=1}^{n} \cos k x\right)
\end{aligned}
$$

Define

$$
f_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos k x
$$

so that, by the last computation, we have, except at $x=2 k \pi$,

$$
f_{n}(x)=\frac{\sin \frac{(2 k+1) x}{2}}{2 \sin \frac{x}{2}}
$$

Now define

$$
E_{n}=\int_{0}^{\pi} x f_{n}(x) d x=\frac{\pi^{2}}{4}+\sum_{k=1}^{n} \frac{(-1)^{k}-1}{k^{2}} .
$$

Thus,

$$
E_{2 n-1}=\frac{\pi^{2}}{4}-\sum_{k=1}^{n} \frac{2}{(2 k-1)^{2}} .
$$

But in view of the other way of writing $f_{n}(x)$ (valid on the interval $[0, \pi]$ except for the right endpoint), we can also write

$$
E_{2 n-1}=\int_{0}^{\pi} \frac{x / 2}{\sin (x / 2)} \sin \frac{(4 n-1) x}{2} d x
$$

Using integration by parts with

$$
u=h(x)=\left\{\begin{array}{cl}
\frac{x / 2}{\sin (x / 2)} & \text { if } 0<x \leq \pi \\
1 & \text { if } x=0
\end{array}\right.
$$

and $d v=\sin \frac{(4 n-1) x}{2} d x$ (you should check that $h^{\prime}(0)=0=\lim _{x \rightarrow 0} h^{\prime}(x)$, to be sure that h^{\prime} is continuous), we get

$$
\begin{aligned}
E_{2 n-1} & =\left[\frac{-2}{4 n-1} h(x) \cos \frac{(4 n-1) x}{2}\right]_{0}^{\pi}+\frac{2}{4 n-1} \int_{0}^{\pi} h^{\prime}(x) \cos \frac{(4 n-1) x}{2} d x \\
& =\frac{2}{4 n-1}\left[1+\int_{0}^{\pi} h^{\prime}(x) \cos \frac{(4 n-1) x}{2} d x\right]
\end{aligned}
$$

Now we have

$$
\left|\int_{0}^{\pi} h^{\prime}(x) \cos \frac{(4 n-1) x}{2} d x\right| \leq \int_{0}^{\pi}\left|h^{\prime}(x)\right|\left|\cos \frac{(4 n-1) x}{2}\right| d x \leq \int_{0}^{\pi}\left|h^{\prime}(x)\right| d x
$$

and the last expression does not change with n. So we see that $E_{2 n-1}$ is the fraction $\frac{2}{4 n-1}$ times a quantity that is no larger than $1+\int_{0}^{\pi}\left|h^{\prime}(x)\right| d x$; and hence, as $n \rightarrow \infty$, we have that $E_{2 n-1} \rightarrow 0$. Therefore,

$$
\frac{\pi^{2}}{4}=\sum_{k=1}^{\infty} \frac{2}{(2 k-1)^{2}}
$$

But by breaking up the original sum into odd and even terms, we also have

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\sum_{k=1}^{\infty} \frac{1}{(2 k)^{2}}+\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}+\frac{\pi^{2}}{8}
$$

so we get

$$
\frac{3}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{8}
$$

and the result follows.

