Def: Let f be a bounded function on a compact interval $[a, b]$.
(a) A partition P of $[a, b]$ is a finite subset of $[a, b]$ containing a, b. If Q is a second partition of $[a, b]$ and $P \subseteq Q$, then Q is called a refinement of P.
(b) Write $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ where

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b .
$$

Then the upper and lower sums of f with respect to P are:

$$
\begin{aligned}
U(f, P) & :=\sum_{i=1}^{n} \sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}\left(x_{i}-x_{i-1}\right) \\
L(f, P) & :=\sum_{i=1}^{n} \inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}\left(x_{i}-x_{i-1}\right)
\end{aligned}
$$

(Notation used in text: The sup here is denoted M_{i}, the inf is m_{i}, and $x_{i}-x_{i-1}=: \Delta_{i} x$.)
(c) The upper and lower integrals of f on $[a, b]$ are:

$$
\begin{aligned}
U(f) & :=\inf \{U(f, P): P \text { is a partition of }[\mathrm{a}, \mathrm{~b}]\} \\
L(f) & :=\sup \{L(f, P): P \text { is a partition of }[\mathrm{a}, \mathrm{~b}]\}
\end{aligned}
$$

(d) If $U(f)=L(f)$, then f is integrable on $[a, b]$, and the common value of $U(f)=L(f)$ is denoted $\int_{a}^{b} f$ or $\int_{a}^{b} f(x) d x$.

